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Abstract  

Papillary thyroid carcinoma is the most common type of thyroid cancer worldwide, but its underlying mechanisms 

remain unclear. The aim of this study was to develop a non-targeted, metabolism-based tissue metabolomic analysis 

method to comprehensively identify the papillary thyroid carcinoma metabolic network with clinical samples. Ultra-

high-performance liquid chromatography and quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOFMS) was 

used to analyze metabolic changes in matched papillary thyroid carcinoma and paracancerous thyroid tissues obtained 

from patients. Principal component analysis, partial least square discriminant analysis, and orthogonal partial least 

square discriminant analysis models were used to separate paracancerous human thyroid and papillary thyroid 

carcinoma samples. In papillary thyroid carcinoma samples, the levels of L-α-amino acids, leucine, β-amino acids, 

valine, alanine, methionine, and their derivatives, as well as those of polypeptides, were significantly lower than those 

in paracancerous tissue. In contrast, the levels of dibucaine, propyzamide, tyrosine, pidotimod, deoxysappanone B 

7,4′-dimethyl ether, hippurate, and emodic acid were significantly increased in papillary thyroid carcinoma. In 

addition, metabolites with significant differences in expression were mainly involved in amino acid biosynthesis and 

metabolism and the mammalian target of rapamycin (mTOR) metabolic pathway. According to the results of our 

metabolomic and bioinformatic analyses, various metabolites may regulate the synthesis and expression of proteins in 

papillary thyroid carcinoma by regulating amino acid metabolism and mTOR-related pathways, which may be related 

to papillary thyroid carcinoma pathogenesis. This study provides novel insights into the metabolic abnormalities of 

papillary thyroid carcinoma and presents a potential method for its treatment. 

 
Background  
The incidence of thyroid cancer is increasing 

worldwide,10 and the disease ranked ninth among the 

most common cancers in women globally in 2020.21 

Thyroid cancer contributes to over 586,000 cancer cases 

and 43,600 deaths each year.6 Papillary thyroid 

carcinoma (PTC) is the most common type of thyroid 

cancer, accounting for approximately 90% of all 

thyroid cancers, and mainly occurs in women aged 30–

45 years. PTC shows good differentiation and a low 

degree of malignancy but is prone to lymph node 

metastasis in the early stages. Therefore, early 

diagnosis and timely treatment are important for 

improving the survival duration of patients with 

PTC.16,3 However, ultrasound and ultrasound-

guided fine needle aspiration biopsy have a 

specificity and negative prediction rate of 86.7% 

and 72.2%, respectively, for microcancer.28 

Consequently, patients are concerned about 

invasive examination methods. To improve the cure 

rate of patients with thyroid cancer, new screening 

methods are required to diagnose the disease more 

accurately and formulate new medical strategies for 

advanced thyroid cancer. Cancer has been 

suggested to be a metabolic disease.24 
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Metabolomics based on nuclear magnetic 

resonance spectroscopy has been widely used to 

study thyroid cancer and, particularly, its 

diagnosis. However, the metabolic pathways 

driving PTC development remain unclear. Non-

targeted metabolomic analysis is an efficient 

method combining multiparametric analysis 

methods. To improve thyroid cancer diagnostic 

accuracy, we aimed to develop a non-targeted 

metabolism-based tissue metabolomic analysis 

method to identify the comprehensive PTC 

metabolic network with clinical samples. We 

studied the overall metabolic characteristics of 

thyroid cancer tissues and identified sensitive and 

specific biomarkers for thyroid cancer diagnosis 

and progression. Our findings may improve 

thyroid cancer diagnostic accuracy and the 

treatment success rate. 

 

MATERIALS AND METHODS 
 
Sample collection  

The ethics committee of the Gansu Provincial 

People’s Hospital approved this study (approval 

number: P202205300031); all participants provided 

informed consent. Matched PTC (group C) and 

paracancerous thyroid tissues (group NC) were 

obtained from patients with PTC with the same 

diagnosis (nude 30; women; age 31–58 years; 

tumor size 0.2–3.6 cm). All patients underwent 

thyroid surgery at the Gansu Provincial People’s 

Hospital. The pathological diagnosis of PTC was 

independently confirmed by two pathologists. The 

tumor samples were micro-dissected to ensure 

that more than 90% of the analyzed tissues 

contained cancer cells and that paracancerous 

tissues were not associated with follicular 

adenomas or thyroid cancers. None of the patients 

received radiotherapy or neoadjuvant 

chemotherapy before surgery. Fresh tumor and 

corresponding paracancerous thyroid tissues were 

rinsed with phosphate buffer after thyroidectomy, 

frozen with liquid nitrogen during the operation, 

and preserved at −80°C until analysis. 

 

Instruments and chemicals  
In this study, we used a mass spectrometer 

(TripleTOF 5600+ Mass Spectrometer; Sciex, 

Framingham, MA, USA), chromatography system  

(Agilent 1290 Ultra-High Performance Liquid 

Chromatography System; Agilent Technologies, 

Santa Clara, CA, USA), and a chromatographic 

column (ACQUITY UPLC BEH Amide 1.7 µm, 2.1 

mm × 100 mm column; Waters Corporation, 

Milford, MA, USA). The chemicals used in this 

study were acetonitrile (1.00030.4008; Merck 

Millipore, Burlington, MA, USA), methanol 

(1.06007.4008; Merck Millipore), ammonium 

acetate (3594; Sigma-Aldrich, St. Louis, MO, USA), 

and ammonia water (105426; Merck, Darmstadt, 

Germany). 

 

Sample preparation 
 
Samples 
Two groups of samples were tested, with 30 

biological replicates per group. For quality control 

(QC), blank samples were prepared 

simultaneously. The QC samples were used to 

calibrate the gas chromatography and mass 

spectrometry (MS) system, determine instrument 

status, and evaluate system stability. 

 

Metabolite extraction 
The samples were ground in liquid nitrogen, and 

100 mg of each sample was mixed with 200 μL of 

precooled water and 800 μL of precooled 

methanol/acetonitrile. Thereafter, the samples 

were precipitated via ultrasonication for 1 h on ice 

and incubated at 20 °C for 1 h. Thereafter, the 

supernatant was centrifuged at 16,000 × g for 20 

min at 4 °C. Subsequently, the supernatant was 

evaporated using a high-speed vacuum-

concentration centrifuge system (Biofuge Stratos; 

Thermo Fisher Scientific, Waltham, MA, USA). For 

MS, the sample was re-dissolved in 100 μL of 

acetonitrile-aqueous solution and centrifuged at 

16,000 × g for 20 min at 4 °C, and the supernatant 

was collected for analysis. 

 

LC-MS/MS analysis 
 
Chromatographic separation 
Throughout the analytical process, the samples 

were placed in an automatic injector at 4 °C. 

Sample separation was performed on an Agilent 

1290 Infinity LC ultra-high performance liquid 

chromatography (UPLC) system and HILIC  
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column (5 μL; Agilent Technologies) at a flow rate 

of 0.3 mL/min at 25 °C. Mobile phase A was water 

mixed with 25 mM ammonium acetate and 25 mM 

ammonia, whereas phase B was acetonitrile. The 

chromatographic gradient elution protocol was as 

follows: 0–0.5 min, 95% B; 0.5–7 min, 65%–95% B; 7–

9 min, 40%–65% B; 9–10 min, 40% B; 10–11.1 min, 

40%–95% B; 11.1–17 min, 95% B. The QC samples 

were inserted in the sample queue to monitor and 

evaluate system stability and experimental data 

reliability.11,14,12 

Mass spectrometry  
The positive and negative ion modes of each 

sample were detected via electrospray ionization 

(ESI). The samples were separated via UPLC and 

analyzed using the TripleTOF 5600+ Mass 

Spectrometer (Sciex). The ESI source conditions 

were as follows: Ion Source Gas1 (Gas1), 60 psi; Ion 

Source Gas2 (Gas2), 60 psi; curtain gas (CUR), 30 

psi; source temperature, 600 °C; IonSapary Voltage 

Floating (ISVF), ±5,500 V; time-of-flight (TOF) MS 

scan m/z range, 60–1,200 Da; product ion scan m/z 

range, 25–1,200 Da; TOF MS scan accumulation 

time, 0.15 s/spectra; product ion scan accumulation 

time, 0.03 s/spectra. Second-stage MS was 

performed via information-dependent acquisition 

(IDA) and adopted a high-sensitivity mode: 

declustering potential (DP), ±60 V (positive and 

negative modes); collision energy, 30 eV. The IDA 

setting was as follows: exclude isotopes within 4 

Da; candidate ions to monitor per cycle, 6. 

 

Data pre-processing 
After format conversion of the original data, the 

XCMS program in MS-DIAL software was used for 

peak alignment, retention time correction, and peak 

area extraction. The structure of the metabolites 

was identified via accurate mass number matching 

(<25 ppm) and secondary spectrum matching, and 

the public HMDB and MassBank databases were 

searched. 

For the extracted data, ion peaks with missing 

values >50% in the group were deleted, positive 

and negative ion peaks were integrated, and 

pattern recognition was carried out using SIMCA-

P14.1 software (Umetrics, Umea, Sweden).  
Multidimensional statistical analysis was 

  
 
 

 
 

 

 

performed after pre-processing the data via Pareto 

scaling (Par), including unsupervised principal 

component analysis (PCA), supervised partial 

least square discriminant analysis (PLS-DA), and 

orthogonal partial least square discriminant 

analysis (OPLS-DA). 

 

RESULTS 
 
Experimental quality evaluation 
 
Total ion chromatography (TIC) plot 
comparison of QC sample mass spectra 

The TIC values of the QC sample mass spectra 

obtained in the positive and negative ion 

detection modes were compared by 

overlaying the spectra (Fig. 1a, b). The 

response intensities and peak retention times 

overlapped, indicating that the variation 

caused by instrument error was small and the 

data quality was reliable. 

FIGURE 1. Positive (a) and negative (b) ion 

mode total ion chromatogram profiles for 

quality control samples. (c) Principal 

component analysis scores of the samples 

(t[1] for principal component 1 and t[2] for 

principal component 2) 
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Overall sample PCA 
The ion peaks of metabolites were extracted using 

MS-DIAL software; there were 15,239 ion peaks in 

the positive ion mode and 9,505 in the negative ion 

mode. The peaks obtained from all experimental 

and QC samples were extracted, processed with 

Par, and subjected to PCA. The PCA model 

obtained using seven cycles of cross-validation is 

shown in Fig. 1c. The QC samples were more 

closely clustered (Fig. 1c), indicating good 

reproducibility. Overall, the instrumental analysis 

was stable, implying reliable experimental data. 

The differences in the metabolic profiles obtained 

reflect biological differences between the samples. 

 

Sample metabolic MS TIC plots 
Each sample was analyzed using UPLC-

quadrupole-time-of-flight (Q-TOF) (LC-MS/MS) to 

obtain two mass spectral raw files (positive and 

negative ion modes). Figure 2a, b and 2c, d shows 

the mass spectral TIC plots of group C and NC 

samples in the positive and negative ion detection 

modes, respectively. 

FIGURE 2. Positive (a) and negative (b) ion mode 

total ion chromatogram profiles for the papillary 

thyroid carcinoma samples. Positive (c) and 

negative (d) ion mode total ion chromatogram 

profiles for the paracancerous tissue group. 

 

Principal component analysis 
Principal component analysis was performed to 

compare group C and NC samples. The PCA 

model parameters obtained with seven cycles of 

cross-validation are shown in Table 1, and the 

PCA model score plot is shown in Fig. 3a. The 

overall distribution trend among all samples was 

observed using PCA, and the score plot of PCA for 

PC1 (i.e., the first principal component) is shown 

in Fig. 3b. The intergroup differences between 

cancer and paracancerous tissue samples were 

significant in the positive and negative ion modes. 

 

Table 1: PCA model parameters 

 

 

 

 

 

 

 

 

A indicates the principal component score, R2X 

indicates the model explanation rate, and Q2  

indicates the model’s predictive power. NC, 

paracancerous tissue group; C, papillary thyroid 

carcinoma group; PCA, principal component 

analysis. 

 

Partial least square discriminant analysis 
The PLS-DA model for each comparison group 

was developed, and the model evaluation 

parameters (R2Y, Q2) obtained with 7-fold cross-

validation are shown in Table 2. The model scores 

are plotted in Fig. 3c. If R2 and Q2 are closer to 1, 

the model is more stable and reliable; conversely, 

if R2 and Q2 are less than 0.5, the model is less 

reliable. The results showed significant intergroup 

differences in the metabolomics of cancer and 

paracancerous tissue samples in the positive and 

negative ion mode models.  

FIGURE 3. (a) Principal component analysis score 

graph for papillary thyroid carcinoma (PTC) and 

paracancerous tissues. The green dots represent 

paracancerous tissue and the blue squares 

represent PTC tissue. (b) Principal component 1 

(PC1) score graph for NC vs. C. (c) Partial least 

square discriminant analysis scores for NC vs. C. 

(d) Orthogonal partial least square discriminant 

analysis score chart for NC vs. C. (e) Orthogonal 

 
 

Sample 

comparison 

group 

A  
R2X 

(cum) 

Q2 

(cum) 

QC 9  0.568 0.26 

NC vs. C 9  0.564 0.177 
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partial least square discriminant analysis 

displacement test for NC vs. C. NC, paracancerous 

tissue group; C, papillary thyroid carcinoma group. 

 TABLE 2 

Evaluation parameters of the PLS-DA model 

 

 

 

 

 

 

 

 

 

R2 indicates the explanatory rate of the model and 

Q2 indicates the predictive power of the model. The 

closer the R2 and Q2 are to 1, the more stable and 

reliable the model. NC, paracancerous tissue 

group; C, papillary thyroid carcinoma group; PLS-

DA, partial least square discriminant analysis. 

 

Orthogonal partial least square 
discriminant analysis 
The variable importance for projection (VIP) was 

calculated to measure the strength and explanatory 

power of the expression pattern of each metabolite 

in the categorical discrimination of each group of 

samples, thus aiding marker metabolite screening 

(generally, a VIP score of >1.0 is used as the 

screening criterion). The OPLS-DA model for each 

comparison group was established, and the model 

evaluation parameters (R2Y and Q2) obtained with 

7-fold cross-validation are shown in Table 3. R2 and 

Q2 values closer to 1 indicate greater model stability 

and reliability; conversely, R2 and Q2 values less 

than 0.5 indicate lower model reliability. The model 

score plot is shown in Fig. 3d. The OPLS-DA model 

could clearly distinguish between the groups of 

samples. The R2 and Q2 of the OPLS-DA model 

built from the experimental data were ≥0.5, 

implying a reliable and stable model. Figure 3e 

shows a plot of the permutation test based on the 

OPLS-DA model for this group The horizontal 

coordinates of the permutation test represent the 

correlation between Y of the random group and Y 

of the original group, and the vertical 

coordinates represent the R2 and Q2 values. The Q2 

intercept was less than 0.05, indicating no 

overfitting. 

 

 

Sample 

comparison 

group 

A 
R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

NC vs. C 2 0.215 0.849 0.177 
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A indicates the principal component score, R2Y 

indicates the model explanation rate, and Q2 indicates 

the predictive power of the model. The closer R2Y and 

Q2 are to 1, the more stable and reliable the model. R2 

and Q2 intercepts indicate the intercept between R2 

and Q2 regression. NC, precancerous tissue group; C, 

papillary thyroid carcinoma group; OPLS-DA, 

orthogonal partial least square discriminant analysis. 
 

Univariate statistical analysis 
Commonly used univariate analysis methods for 

differentially expressed metabolite analysis between 

groups of samples include fold-change analysis (FC 

analysis), t-tests, and volcano plot analysis, which 

combines the first two methods. The univariate 

analysis can be used to visualize the significance of 

metabolite changes between groups and thus help 

screen for potential marker metabolites (FC > 2 or FC 

< 0.5 and P < 0.05 were used as screening criteria in 

this study). Figure 4a is a volcano plot for the 

comparison between groups C and NC. Differentially 

expressed metabolites were screened using 

univariate statistical analysis. 

FIGURE 4: (a) Differentially expressed metabolites 

between the papillary thyroid carcinoma and 

paracancerous thyroid tissue groups. Red dots 

represent upregulated metabolites and green dots 

represent downregulated metabolites. (b) 

Hierarchical clustering of significantly different 

metabolites in NC vs. C. (c) Heat map of significantly 

differentially expressed metabolites in the correlation 

coefficient matrix. The correlation  

coefficient between metabolites is represented as a 

colored circle, where R > 0 indicates a positive 

correlation and is represented in red, and R < 0 

indicates a negative correlation and is represented in 

blue. Larger circles and darker colors indicate a 

stronger correlation. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3: Evaluation parameters of the OPLS-DA model 

 

Sample 

comparison 

group 

A R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

R2 

intercept 

Q2  

intercept  

NC vs. C 1+1+0 0.215 0.849 0.616 0.597 -3.75 
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TABLE 4 Differentially expressed metabolites in papillary thyroid carcinoma and paracancerous 

tissues in positive and negative ion modes (Top 15, FC < 0.5) 

No. Metabolite VIP 
FC 

(NC/C) 
P 

1 L-Norvaline 6.8423 0.0278 0 

2 Bisphenol S 5.8236 0.4597 0 

3 Leucine 5.7582 0.308 0 

4 
(S)-3-Amino-4-

phenylbutyric acid 
5.4321 0.1487 0 

5 Isoleucylisoleucine 4.5075 0.2671 0 

6 Gly-Leu 4.0201 0.1637 0 

7 L-Valine 3.8381 0.2632 0 

8 Alanine 3.6419 0.0779 0 

9 Nerolidol 3.5595 0.0961 0.0004 

10 Tryptophan 3.1445 0.1321 0.0004 

11 
(Z)-2-Octylpent-2-

enedioic acid 
3.0889 0.4104 0 

12 Propoxyphene 3.0839 0.2712 0.0001 

13 Methionine 2.8601 0.308 0.0001 

14 Trans-cinnamic acid 2.729 0.2186 0 

15 
L-Beta-

homothreonine 
2.6063 0.0474 0.0001 

VIP, variable projection importance; FC, fold-change. NC, paracancerous tissue group; C, papillary 

thyroid carcinoma group. 

TABLE 5: Differentially expressed metabolites in papillary thyroid carcinoma and paracancerous 

tissues in positive and negative ion modes (Top 15, FC > 2) 

No. Metabolite VIP 
FC 

(NC/C) 
P 

1 Dibucaine 1.3518 5.2285 0.0268 

2 Propyzamide 2.2084 5.0516 0 

3 Tyrosine 2.1861 3.9229 0.0007 

4 Pidotimod 5.057 3.6022 0.0002 

5 
Deoxysappanone B 

7,4′-dimethyl ether 
1.9435 3.0312 0.0021 

6 Hippurate 1.5693 3.0166 0 

7 Emodic Acid 1.47 2.9797 0 

8 Perseitol 1.1308 2.9123 0.0004 

9 Nitrendipin 1.2662 2.8878 0.0003 

10 
2,6-

Dimethoxyquinone 
1.0622 2.7386 0.0071 

11 L-Thyroxine 1.4033 2.6938 0.0361 

12 Dysidin 1.0193 2.6923 0 

13 
Beta-indoleacetic 

acid 
1.4043 2.6316 0 

14 Fenuron 1.6225 2.4033 0.0044 

15 3-Methylxanthine 1.5715 2.3601 0.0004 

VIP, variable projection importance; FC, fold-change. NC, paracancerous tissue group; C, papillary 

thyroid carcinoma group 
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Significantly differentially expressed 
metabolite levels 
The VIP values obtained from the OPLS-DA model 

were used to measure the intensity and explanatory 

power of the expression pattern of each metabolite in 

the discrimination of each group of samples and to 

mine for biologically significant differentially 

expressed metabolites (Table 3). In the positive and 

negative ion modes, the conditions of VIP > 1.0, P < 

0.05, FC > 2.0, and FC < 0.5 were combined to yield a 

total of 152 differentially expressed metabolites in 

cancer and paraneoplastic tissues (including 23 with 

FC > 2.0 and 129 with FC < 0.5). The details of the top 

15 differentially expressed metabolites sorted by VIP 

values are listed in Tables 4 and 5. 

 

Bioinformatic analysis 
Hierarchical cluster analysis 
To evaluate the candidate metabolites and 

comprehensively visualize the relationships between 

samples and the differences in metabolite expression 

patterns among samples, we used qualitative 

hierarchical clustering of qualitatively significantly 

differentially expressed metabolites for each group of 

samples. This analysis enabled us to accurately 

screen for marker metabolites and examine the 

associated metabolic processes. Generally, when the 

candidate metabolites are reasonably accurate, the 

same group of samples cluster together. At the same 

time, metabolites in the same cluster have similar 

expression patterns and are likely to be in close 

proximity to each other in the metabolic process. 

Figure 4b shows the hierarchical clustering results of 

significantly differentially expressed metabolites for 

the comparison between groups C and NC. 

 

Correlation coefficient matrix 
Correlation coefficients between significantly 

differentially expressed metabolites were calculated 

using Pearson correlation analysis. The correlations 

between significantly differentially expressed 

metabolites are presented as a heat map of the 

correlation coefficient matrix of NC vs. C (Fig. 4c). 

This matrix shows the correlation between 

significantly differentially expressed metabolites. 

 

Kyoto Encyclopedia of Genes and Genomes 
(KEGG) metabolic pathway analysis  
Figure 5 shows a map of the cancer carbon metabolic 

pathways associated with the significantly 

differentially expressed metabolites in NC vs. C. 

The results showed that three transcription 

factors, C-myc, HIF-1, and p53, are key 

regulators of tumor metabolism and coordinate 

tumor metabolism differentially, with many 

other oncogenes clustering along signaling 

pathways regulating c-myc, HIF-1, and p53 

expression. 

Figure 5: Map of the cancer carbon metabolic 

pathways associated with the significantly 

differentially expressed metabolites in the 

papillary thyroid carcinoma and paracancerous 

tissue groups 

 

 
 

 
Kyoto Encyclopedia of Genes and 
Genomes pathway enrichment analysis 
The significantly differentially expressed 

metabolites obtained from the comparison 

groups were subjected to KEGG metabolic 

pathway enrichment analysis (Fig. 6a, b). The 

significantly differentially expressed 

metabolites are mainly involved in protein 

digestion and absorption; phenylalanine 

metabolism; mammalian target of rapamycin 

(mTOR) signaling pathway; mineral uptake; 

cancer carbon metabolism; amino acid 

biosynthesis; arginine biosynthesis; aminoacyl-

tRNA biosynthesis; alanine, aspartate, and 

glutamate metabolism; ABC transport; and 

other metabolic pathways. 
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FIGURE 6. (a) Kyoto Encyclopedia of Genes and 

Genomes (KEGG) metabolic pathway enrichment 

analysis of the significantly differentially 

expressed metabolites of NC vs. C (Top 10). (b) 

Kyoto Encyclopedia of Genes and Genomes 

metabolic factor enrichment analysis of the 

significantly differentially expressed metabolites 

of NC vs. C (Top 10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSIONS 
Here, UPLC-Q-TOF LC-MS liquid MS was used to 

analyze the overall metabolite changes between 

PTC and matched paracancerous tissues. Control 

experiments showed that the instrumental 

analysis used was stable, and the experimental 

data were stable and reliable; therefore, the 

differences in the metabolic profiles obtained in 

this study reflect the biological differences 

between the samples. The OPLS-DA identified 152 

differentially expressed metabolites, and KEGG 

pathway enrichment analysis showed that the 

differentially expressed metabolites in PTC and 

 

paraneoplastic tissue are mainly associated with 

the metabolism and biosynthesis of amino acids 

and the mTOR signaling pathway. 

According to the OPLS-DA results, the levels of 

metabolites such as dibucaine, proprizamide, 

tyrosine, pidotimod, deoxysappanone B 7,4′-

dimethyl ether (Deox B 7,4), hippurate, and 

emodic acid were significantly elevated in PTC. 

Tyrosine phosphorylation is a broad post-

translational modification essential for 

promoting metabolic reprogramming in cancer 

cells,22 and multiple cancer types exhibit 

“oncogenic addiction” to receptor tyrosine 

kinase dysregulation.17,27 showed that pidotimod 

enhanced the antitumor effects of cisplatin in 

mouse lung cancer by promoting the infiltration 

of dendritic and CD8T+ cells and upregulating 

the expression of IFN-γ and granzyme B. The 

antitumor effects of cisplatin in mouse lung 

cancer were enhanced by the expression of IFN-

γ and granzyme B. Deox B 7,4 potentially inhibits 

the antitumor effects of cisplatin in mouse lung 

cancer by inhibiting the Slit2/Robo1/2, 

SLIT3/Robo4, COX2/PTP-Rb/pik3r2, and 

DLL4/hey2/efnb2a signaling pathways and 

VEGFR-2/FGFR1/MMP9 activation to exert anti-

angiogenic effects.2 However, the link among 

dibucaine—whose level is most significantly 

elevated in PTC—proprizamide, and thyroid 

cancer, has not been reported. 

 

According to the OPLS-DA results, the levels of 

metabolites such as L-norvaline, bisphenol S, 

leucine, (S)-3-amino-4-phenylbutyric acid, 

isoleucylisoleucine, gly-leu, and L-valine were 

significantly reduced in PTC.15 reported that L-

norvaline treatment reversed cognitive decline in 

mice with Alzheimer’s disease. This treatment 

was neuroprotective, and it reduced β-amyloid 

degeneration, attenuated microglial 

proliferation, and decreased tumor necrosis 

factor transcript levels.29 showed that the spatial 

distribution of ceramide-sphingomyelin 

signaling pathway-related lipids and 

chromosomal stability-related proteins, and cell 

proliferation were altered in the central necrotic 

zone of breast tumors following bisphenol S-10 

(BPS-10; 10 μg/kg body weight/day) exposure, 
with a more pronounced 
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proliferation of breast tumor cells. In contrast, BPS-100 

exposure significantly accelerates breast tumor 

progression due to changes in the spatial distribution 

of proteins associated with nucleic acid structural 

stability in the surrounding tumor region. Intracellular 

leucine regulates cell growth by binding to sestrin2, a 

negative regulator of mTOR complex 1 (mTORC1), 

disrupting the link between sestrin2 and gator2, a 

positive regulator of mTORC1 activity.25,26 

Additionally, acetyl coenzyme A positively regulates 

mTORC1 activity through EP300-mediated 

acetylation of mTORC1 regulator raptor at K1097.25 

Thus, leucine plays a central role in amino acid sensing 

by mTORC1, and the mTORC1 signaling pathway can 

also influence lipid and nucleotide syntheses, serving 

as a link between amino acid sensing and other 

anabolic processes.1 Nerolidol inhibits the 

proliferation of uterine leiomyoma cells through 

reactive oxygen species-induced DNA damage and 

downregulation of the ATM/Akt pathway.5 No link 

between (S)-3-amino-4-phenylbutyric acid or 

isoleucylisoleucine and thyroid cancer has been 

reported, and further studies are required to confirm 

this. 

The KEGG pathway enrichment analysis showed that 

the differentially expressed metabolites in PTC and 

paraneoplastic tissue are related to amino acid 

metabolism and biosynthesis and the mTOR signaling 

pathway. An adequate supply of amino acids is 
important for cancer cells to maintain their 

proliferation. In addition to their direct role as 

substrates for protein synthesis, they may play a role 

in producing energy, driving nucleoside synthesis, 

and maintaining cellular redox homeostasis. Studies 

on amino acid metabolism in cancer have highlighted 

a delicate network, and in many cases, tracking the 

uptake and use of specific amino acids may not reveal 

the actual function of a pathway.23 Mammalian target 

of rapamycin, a highly conserved serine/threonine 

protein kinase, exists as mammalian target of 

rapamycin complex 1 (mTORC1) and 2 (mTORC2).8 

Mammalian target of rapamycin complex 1 includes 

mTOR, raptor, PRAS40, deptor, mLST8, TEL2, and 

Tti1. It plays an important activation role in the 

presence of growth factors and amino acids, 
depending on the energy status, stress, and oxygen 

levels, and regulates several biological processes, 

including lipid metabolism, autophagy, protein  

synthesis, and ribosome biogenesis. 

Mammalian target of rapamycin complex 2 

consists of mTOR, mSin1, rictor, protor, deptor, 

mLST8, TEL2, and Tti1 and responds to growth 

factors that control cytoskeleton organization, 

metabolism, and survival.4,7,19,18 Studies have 

shown that the activation of the PI3K/Akt/mTOR 

pathway is important in PTC pathogenesis,13 

consistent with our KEGG pathway enrichment 

analysis results. Aberrant PTEN methylation 

patterns have been observed in follicular thyroid 

cancer and hypo-differentiated or interstitial 

thyroid cancer, leading to the inactivation of the 

gene. Methylation of PTEN usually occurs in 

conjunction with other activating mutations in 

the PI3K/Akt pathway.20,30 Furthermore, germline 

mutations in PTEN lead to an increased risk of 

malignancy in several organs, including the 

thyroid.9 Therefore, it has been suggested that 

PI3K/Akt signaling pathway activation leads to 

increased PTEN methylation, resulting in 

reduced PTEN activity, in turn causing further 

upregulation of the PI3K/Akt pathway.13 Thus, 

further exploration of the effects of kinase 

inhibitors targeting different members of the 

PI3K/Akt/mTOR pathway, alone or in 

combination with other targeted or conventional 

therapies, may help develop new therapeutic 

strategies for patients with PTC. 

Metabolomic results showed that the levels of 

amino acids and their derivatives (L-α-amino 

acids; leucine and its derivatives; β-amino acids 

and their derivatives; polypeptides; valine and its 

derivatives; alanine and its derivatives; and 

methionine and its derivatives) were significantly 

decreased in PTC. Whereas, the KEGG 

enrichment analysis showed that the metabolites 

with significant differences, dibucaine, 

proprizamide, tyrosine, and pidotimod, were 

mainly involved in amino acid biosynthesis and 

metabolism and the mTOR metabolic pathway. 

Targeting this pathway may represent a novel 

approach to the treatment of PTC. 
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