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Abstract

Non-negative matrix factorization (NMF) is an effective local feature extraction algorithm with non-negative matrix
constraints. In order to obtain a NMF-based algorithm with better clustering performance and stronger robustness,
this paper propose a new non-negative matrix factorization method called Graph Regular- ized Semi-NMF under
sparse constraints (Semi-GNMFSC). This model embeds a Laplacian reqularization term on the basis of Semi-NMF,
keeps the corre- lation information of high-dimensional space samples, and maps effectively to low-dimensional space,
thus improving the learning ability of algorithm space and making full use of the inherent geometry of data
distribution. Note that GNMF algorithm is deficient in robustness, that is, it is susceptible to problems such as noise.
So, by adding 11 norm sparse constraint to the basis matrix and coefficient matrix of the model respectively, the
sparsity of the low-dimensional representa- tion matrix can be improved, clearer data can be obtained to approximate
the high-dimensional matrix, and problems such as the influence of noise introduced in data reconstruction and the
reduction of data clustering performance can be solved, and the adjustment of data eigenvalues and sparse constraints
in the matrix can be realized. More importantly, the iterative optimization scheme of Semi-GNMFSC is derived in
this paper, and the convergence of the algorithmis proved theoretically. In addition, clustering experiments have been
conducted on 5 different types and sizes of public image datasets, and compared with K-means, PCA, and other NMF
variants to verify the superiority of the Semi-GNMFSC algorithm in the three clustering performance indicators of
ACC, NMI, and Purity.

BACKGROUND selection of an appropriate method for image
noise reduction to eliminate interference is a
Image recognition is a prominent area of study  (ritjcal step in the field of image recognition.
within the realm of computer vision, with a plethora  T}e dimensionality of image data typically
of algorithms proposed for the purpose of  presents a challenge, impacting the accuracy of
recognizing images within pristine datasets.””¥  (lagsification and the computational time
However, in numerous practical scenarios, images required for related calculations on target images.
are inevitably impacted by occlu- sions, weather g, it is imperative to reduce the dimensionality
conditions, and environmental factors.*> Moreover, ¢ image data. Note that the objective of
images in reality are inherently noisy. This will have dimensionality reduction technology is not only
varying degrees of impact on subsequent processing o eliminate redundant dimensions but also to
tasks such as image clustering, segmentation, fea- preserve valuable dimensions, to achieve low-
ture extraction, and edge detection. Therefore, the rank approximation for high-dimensional data.
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Of course,
requirements.

many methods meet the above
Next,

dimensionality reduction methods. Prin- cipal

we will list some classic

component analysis (PCA) 22 stands as one of the
most conventional techniques for dimensionality
reduction, characterized by its succinct concept: to
reduce the dataset’'s dimensionality while retaining
maximal variability (i.e. statistical information).
Linear discriminant analysis (LDA)»4 is a
supervised dimensionality reduction technique, in
contrast to PCA which is unsupervised, as it
considers the category output for each samplein its
data set. The fundamental concept of LDA can be
succinctly summarized as “minimizing intra-class
variance and maximizinginter-class variance post-
projection”. Local linear embedding (LLE) 384 is
alsoa very important dimension reduction method.
Since LLE maintains local features of samples
during dimensionality reduction, it is widely used

in image recognition, high-dimensional data
visualization and other fields. Compared with
traditional PCA, LDA (or other similar

dimensionality reduction methods) focuses on
sample variance and LLE focuses on maintaining
local linear features of samples during
dimensionality reduction. Besides, independent
component analysis (ICA)11 can reduce the
dimensionality of samples with a non-Gaussian
distribution. It is worth noting that the primary
distinction between ICA and PCA lies in the fact
that ICA aims to identify the direction of maximum
independence, and in contrast, PCA seeks to
identify the direction of maximum variance. These
algorithms represent fundamentally different
solution models, yet both are essentially linear
processing methods.

The aforementioned dimensionality reduction
methods are considered to be clas- sic in the field.
However, it has been widely acknowledged that
image data
attributes. Therefore, it is natural to impose a

constraint ensuring that the data obtained through

inherently possess nonnegative

dimensionality reduction remains nonnegative. In
1994, the method of Non-negative Matrix
Factorization (NMF) was introduced by 3¢although
it was not yet referred to as NMF at that time. This
approach involved utilizing non-negative linear
combina- tions of variables to represent factors,
ensuring the physical significance of the data
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being factorized. The weighted least squares
algorithm was employed for model opti- mization
in %. However, due to computational complexity,
this form of NMF did not gain widespread
adoption. It was not until 1999 that the concept of
NMF was first introduced by 25 in Nature and
applied to face image representation. Then, the
principles of NMF have received attention in
various fields.

Although the NMF algorithm has the natural
characteristics of sparse repre-
sparsity is still not enough. Based on the NMF
model, Hoyer et al. proposed Non-negative Sparse
(NSC) v
factorization with sparse constraints Method
(NMFSC) 17 making the results of NMF algorithm
further sparse, and then improving the recognition
rate of the algorithm. From then on, the research on
sparse NMF algorithm has become more and more

sentation, its

Coding and non-negative matrix

popular 34133031 Note that NMF is essentially an
unsuper- vised method and cannot exploit label
information. The authors in 28 proposed a new
semi-supervised matrix factorization method,
namely  constrained  nonnegative = matrix
factorization (CNMF). This method

label informa- tion as an additional constraint,

introduced

which could be applied to a wide range of practical
problems. Many studies have found that high-
in the

space.
Aiming at the advantages of manifold learning,
many NMF methods based on manifold learning

dimensional data is usually located

nonlinear low-dimensional manifold

have been proposed, such as Graph regularized
nonnegative matrix factorization (GNMF) 6 neigh-
borhood

nonnegative matrix factorization 2¢ robust graph

preserving  orthogonal  projection

reconstruction-based nonnegative matrix
factorization 18, and sparse dual graph-regularized
deep nonnegative matrix factorization 7 . There are
still many research results based on GNMEF, please
refer to 262746 for details.

Thus, we can summarize the following three
advantages of NMF for use in this paper: (1) NMF
is adept at processing large-scale data in matrix
form, yielding decomposition results with clear
physical significance; (2) The implementation of
the NMF algorithm is

resource-efficient; (3) By integrating concepts such

straightforward and

as graph theory, orthogonality, and sparsity, the
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applicability and accuracy of NMF can be
effectively enhanced, particularly in addressing
clustering challenges posed by noisy images.
However, due to NMF making the raw data, basis
matrix, and coefficient matrix allnon-negative, this
to someextent limits its performance. So, the Semi-
NMF model was proposed in 1. The idea of Semi-
NMF allows the (part of) factorization of the
original data matrix to be negative (such as
allowing the basis matrix to be negative or the
coefficient matrix to be nonnegative), and expands
the application scope of the NMF method.
Moreover, most of the NMF- based algorithms are
sensitive to noisy data 7101837 so selecting the best
denoising method in noisy image clustering based
on NMF models isnecessary. A natural question is
whether Semi-NMF can bring different results in
noise processing?

Driven by the above ideas, this paper combines
them to study “clustering research on graph
regularized semi-nonnegative matrix factorization
under sparse constraints” for regular or noisy
image data. It is worth noting that, in this study,
the concept of “part constitutes a whole” of NMF
is visually demonstrated. For example, when
considering a face image, it can be vectorized to
form a nonnegative matrix and then undergo
matrix factorization using NMF. Interestingly, the
resulting base image does not display a complete
head image but instead focuses on specific parts of
the face such as eyes, mouth, eyebrows, etc.
Additionally, we will conduct simulations on the
image data incorporating various types of noise
and implementing diverse denoising techniques.
The objective is to determine the most effective
denoising method for different types of noise
through experimental analysis, thereby offering
valuable future

insights  for denoising

preprocessing procedures.

The main contributions of this paper are as follows:
(1) We propose a novel model, Semi-GNMFSC,
based on NMF, which is par- ticularly well-suited
for sampling data in low-dimensional manifolds
embedded in high-dimensional spaces and for
clustering image data with redundant information.
(2) Firstly, the Semi-GNMFSC model relaxes the
nonnegative constrainton the basis matrix, thereby
enhancing the algorithm’s applicability. Secondly,

integrating a graph regularization term with
sparsity constraint, the geometric structure of both
data and feature manifolds is preserved, ensuring
sparsity of the factor matrix and yielding
improved local features for significantly enhanced
clustering performance.

3) By adding sparsity constraints to the
coefficient matrix or basis matrix, we propose two
variations of the semi-GNMFSC model, namely
Semi-GNMFSCU and Semi-GNMEFSCV,
evaluate their clustering performance through
experimental results. Our findings indicate that

and

adding sparsity constraint to the basis matrix
yields
robustness for the model, thus providing valuable
insights for future research in this area.

optimal clustering performance and

The rest of this paper is structured as follows.
Section 2 briefly reviews the basic algorithms of
NMF and describes variant theories of the NMF
algorithms used in this paper. Section 3 provides a
detailed introduction to two important new
models of Semi-GNMFSC and their corresponding
update rules. More importantly, the con- vergence
proofs of two new algorithms’ update rules are
alsogiven. Building on the preparatory work of the
previous three sections, Section 4 presents many
convincing numerical experiments. Finally,
Section 5 makes a brief summary and outlook of

this paper.
Auxiliary Work

In this section, firstly, we provide definitions or
explanations of some commonly used symbols,
and secondly, we also provide a brief review of
NMF, Semi-NMF, and GNMF. Given n images and
vectorized representation of each image, these
images can be represented by a matrix Y = [y1, y2,

., yn] € RN and each column of Y
represents a sample vector. Here and in all

subsequent representations, RV*" represents the

set of all matrices of M X N whose elements are

real, and RY*N represents the set of all matrices of

M X N whose elements are real and non-negative.
Let U=(uy, ..., u, ) €ERMKandV=(v,,...,v)
€ RY*X denote the basis matrix and coefficient
matrix obtained by factorization of matrix Y ,
respectively.
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The symbol || - |1 is the representation of the norm

of 11, which is the sum of the absolute values of
each element in the target matrix. Specifically, the

RM XN

norm of 11 of the matrix A € is defined as:

Al = ?11 Z]'I\I:1|aij l,
the symbol || - llr is the representation of the
Frobenius norm, which can be viewed as a

generalization of the I2 norm of vectors, thatis, the
square root of all elements:

IAllE = /Tr(AAT) = /Zi,j az;,

Tr () is the symbolic representation of the trace of
a matrix, and the trace of a square matrix A €
R™™ is defined as the sum of diagonal elements,
ie,

Tr(A) =X ,a; = a4y + Ay + 4 Ay

This paper uses the following properties of Tr: (1)
Tr (A + B) = Tr(A) + Tr(B); (2) Tr(rA) =r Tr(A),
where r is a scalar; (3) Tr (AB) = Tr (BA), where A
and B have appropriate expressions; (4) Tr (AT) =
Tr(A).

The symbol W is a symbolic representation of the
weight matrix, and Wj is used to measure the
proximity of two points yi and yj. proposed three
definition methods: (1) 0-1 Weighting, (2) Heat
Kernel Weighting, (3) Dot-Product Weighting 7.
For simplicity, 0-1 Weighting is used to define the
weight matrix W in this paper. The symbol D is the
symbolic representation of the diagonal matrix
whose entries are the sum of column elements in
symmetric matrix W. That s, Dj = }1 Wj, written in
matrix form:

D11

7\ o/

The symbol L is the symbolic representation of the
graph Laplacian matrix with L =D -W, whichis the
degree matrix minus the adjacency matrix. A is the
that the
smoothness of the new representation. a is the

DZZ

regularization =~ parameter controls
parameter used to control the effect of sparse

constraints. J is an all-1 matrix.

The Journal of Reproductive Medicine®

NMF

The objective of the NMF algorithm is to identify
two nonnegative matrices, U and V, such that their
product closely approximates the original matrix Y,
ie, Y=UVT. The objective function of NMF canbe
expressed as follows:

i 2
min Y- U2
st U20,V20

(1

The decomposition can be interpreted as follows:
the column vectors of the original data matrix Y are
expressed as weighted combinations of all the
column vectors in the factor matrix U=[ uix]e RY*K
with the weighting coefficients being the elements
of the corresponding column vectors in factor
matrix VI=[ vij]€ R¥*N. Therefore, U is referred to as
a basis matrix, and V is referred to as a coefficient
matrix. When X < /N, utilizing the coefficient matrix
instead of the original matrix can effectively achieve
dimensionality reduction and compression of large-
scale raw data. This approach not only minimizes
storage space but also reduces computational costs,
making it a valuable technique for handling high-
dimensional datasets. To solve (1), the update rule
proposed by 2 is shown below:

- YV
vy,
YU
j

Uik

Semi-NMF

It is well-established that the data Y, U, and V in
NMF must adhere to non-negativity. However,
various practical applications, such as sensor
generated data, do not necessarily conform to this
constraint. Semi-NMF extends the applicability of
NMF by relaxing the nonnegative constraints on the
data. Unlike the classic NMF, Semi-NMF only
imposes nonnegative constraints on the original
coefficient matrix V, potentially extending the
applicability of Semi-NMF to a wider range of
problems (see 19) for details). Simultaneously, the
effectiveness of the concept of “semi-nonnegative”
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has been demonstrated through experiments by 38
As a result, the objective function based on Semi-
NMF now takes the following form:

min |ly-yyr|2,

u,v
stV>0

(2)

To solve (2), the update rule proposed by " is
shown below:

UeYVTV) -1,

vk « vjk Oy + VW 0) i
L YTU); + [VIUTU)* ]

Throughout this paper, the symbols A}, and Ay in
a matrix A = [Aij ] are presented in the following
way:
{ Al = (Ap| + Ap) /2,
A = (1| — A/ 2,

in which case A*=[ A}], A~ = [A5 land Aj= A -Aj.

It is under the guidance of this positive result of
Semi-NMF that we will incorporate the idea of
“semi-nonnegative” into our data processing.

GNMF

The authors in 7 have incorporated spectral graph
theory 7140 and manifold learning theory 324into the
NMF algorithm, resulting in the proposal of the
GNMF algorithm. GNMEF is required to maintain the
geometric. structure of the samples in the low-
dimensional space
factorization. Assume thatthe two data points y: and

while performing matrix
yi are adjacent points in the original space, then
under low-dimensional space, the corresponding zi
and zj are also neighboring points (let za= [va, . . .,
vat]T be the low-dimensional representation of ya). In
general, we use Euclidean distance to measure the
“dissimilarity” between the
representation of two data points with ziand zj, i.e,,

low-dimensional

d (zi, zj )= llzi— zj |2 It is easy to see that the difference
between zi and z; also depends on the W matrix in
the beginning of this section. With the help of weight
matrix W, one can use the following formula to
measure the smoothness of the low-dimensional
representation:

1
R1 =521in=1 Iz — z I? Wi = IBWAN A
=121 Z;W;

=Tr(VIDV)-Tr(VIWV)=Tr(VTLV).

By minimizing R, if the similarity between data
points yi and y; is high, their corresponding low
dimensional space values zi and z; are also the
This regularization
function is integrated with the original NMF
objective function to obtain GNMF, which is
defined by the following objective function:

same. geometry-based

min

A UVT N2 +ATr(VTLY).

s.t. U20,V=0

(3)

To solve Eq.(3), the update rules proposed by ¢is
shown below:

" V)i
KUV )y,
(YT U +AW V),
KW UTU £ ADV)

Uik <

[
Semi-GNMFSC

In this section, based on the auxiliary work in the
previous section, integrating semi non-negative,
graph regularization, and sparse constraints
together, a novel NMF based method called Semi-
GNMFSC model will be presented. We will first
provide a detailed introduction to the specific form
of our

improved model, followed by cor-

responding multiplication update rules, and
finally provide the convergence theorem and its

proof.

Objective function

Due to the strong performance of GNMF and
Semi-NMF, these two
approaches. Initially, we introduce the concept of
Semi-NMF into the original NMF framework. This
relaxation of nonnegative constraints on the
original matrix and basis matrix expands the
applicability of NMF to a wider range of scenarios.

we have integrated

For instance, in this study, although the image
dataset is non-negative, negative values are

introduced during the denoising process of noisy
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data using wavelet transform. This results in the
original matrix not satisfying the constraint of
NMF, NMF
interpretability. However, we are only committed

making meaningless  under
to reducing dimensionality through the concept of
NMEF. As for whether the factorized basis matrix is
non-negative, it is not important compared to the
non-negative coefficient matrix that we need more.
In such cases, Semi-NMF can address these issues.
Additionally, in order to effectively handle data
sampled from a submanifold embedded in a high-
dimensional ambient space, we incorporate the
intrinsic geometric structure of data distribution
into the objective function as an additional
regularization term based on Semi-NMF. Then the
following formula is obtained:

U IY = UVT B £ATr(VILY). (4)
st. V=0

Note that in ¢ they combined the NMF algorithm
with sparse coding to establish Non-Negative
(NNSC)
corresponding application performance. So, after
integrating the concepts of GNMF, Semi-NMF

algorithms, and the sparsity of matrices ignored in

Sparse Coding and improved the

previous research, we will introduce the concept of
sparsity into model (4) to strengthen sparsity
constraints on the basis matrix U or coefficient
matrix V', in order to obtain a decomposed matrix
U or V that is sparse and achieve better clustering
performance. So, we will obtain the following
two new models.
(1) Apply sparse constraints to the coefficient
matrix V.
JSemi-GNMFSCv ={ U IIY = UVT 12 +ATr(VILV) +
allViz. (5)
s.t. V=0

(2) Apply sparse constraints to the basic matrix U.
J Semi-GNMSCu =Z”$//Y — UVT |2 +ATH(VILY) +

allU ;. 6)
s.t. V=0

The above two new models are collectively referred
to as Semi-GNMFSC model.

The Journal of Reproductive Medicine®

Update Rules

In this subsection, we will present the solution to
model (5) and model (6). As we have seen, (5) and
(6) are not jointly convex for Uand V, so we cannot
The
minimization problem can be solved by using the

have a closed- form solution. above

iterative algorithm updated alternately by U and V.

Efficient algorithm for solving model (5)

The model (5) can be re-expressed in the following
sense:

J Semi—-GNMFSCv =Tr((Y-U VT)(Y-U V T)T)+
ATr(V TLV)+all Vi1
=Tr(YYD-2Tr(YTUVD+Tr U VIVUT) (7)
+ATr(VTLV) +alV /s,

and the optimization of U is equivalent to
optimization of the following functions:

O ==2Tr(YTUVT)+Tr(VUTUVT).

Since the matrix U does not have any restriction, it
is straightforward to take the partial derivative of
O1 concerning U and set it to zero, i.e.,

001

==2YV+2UVTV=0,
au

and then the following update rule of U is arrived:
U=YV(VTV )L )

Therefore, the update rule and convergence proof of

U in this paper is consistent with that in Semi-NMF

11 The difference is the update rule and convergence

proof of coefficient matrix V.

Next, we give the updating rule for V . The

optimization of V is equivalent to the optimization

of the following functions:

O =2THYTUV D+ Tr(UVTVUD+ATr (VTLV) + afV /1.

Let ¢ be the Lagrangian multiplier that constrains
V2 0 and @ = [pi], so that one can obtain the
following Lagrangian function:

L1==2 Tr(YTUVT) + Tr(UVTVUT) + ATH(VILV Ha f V J1-Tr (DPVT) .

The first partial derivatives of L1 with respect to V
will lead to

Ly _

P ==2YTU+2V UTU+2ALV +ali—pu,
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and with the help of KKT condition # ¢j vjx =0,
(-2YTU +2V UT U+ 2ALV + ai)kVik =0 9)
follows. According to this method, it can be
derived that:

{ YUl = (VT Uf = (UT 0D
VU Ul = VAU O] — VU D] -

We can obtain the following update rule:

20¢TU) fi +2[VUT U] +22(WV)
200U 2V (UT U +22(DV) j+a

Ujk <— Djk (10)

Therefore, (10) reduces to

(2YTU+2VUTU +2ALV +ali) x Vi =0,  (11)

and (11) isidentical to (9). In fact, both of (11) and
(9) require that at least one of the two factors is
equal to zero. The first factors in both equations
are the same, and for the second factors Viand
Vi if Vik = 0,then Vi =0, and vice versa. Thus,
if (11) holds, (9) also holds and vice versa. So, itis
true that (11) is identical to (9). Theorem 1. The
objective function [Semi—-GNMFSCV in Eq.(5) is
nonincreasing under the updating rules in Eq.(8)
and Eq.(10).The Euclidean distance is invariant
under these updates if and only if U and V are at
a stationary point of the distance.

Theorem 1 guarantees the convergence of the
iterations in Eq.8) and Eq.(10), so the final
solution will be a local optimum. Our proof
basically follows the idea of Semi-NMF in Ding
et al (2008) and will be given in section 3.4.

Efficient algorithm for solving model (6)

The model (6) can be re-expressed in the
following sense:

JSemi-GNMFSCu = Tr[(Y=UVT) (Y-UVT)T +A Tr(VT
LV)+afU f1=Tr (YYT)=2Tr(Y TUV 1) + Tr (U V
TVUT) + A Tr (VILV) +afU /1. (12)

Note that the matrix properties Tr(X) =T r(XT ), T
(XY )=Tr(Y X) for suitable X and Y. Let 1 and
¢ be the Lagrange multipliers satisfying @ = [¢p],

then the Lagrange function £z of (12)is as
follows:

£L3=_J Semi-GNMFSCu - Tr (WUT ) — Tr (®V7). (13)

Taking the partial derivative of the above function

/> with respect to U and V will yield the following
two expressions.

oL,

2= Y V+2UVIVia A=, (14)

S2_YTU+2VUTU+2ALY 0. (15)

Similarly, UVTV in (14) can be represented as:
[UVTV]g = [UV V]G — [V,
as well as VUTU in (15) can be represented as:
[VUTUy = [VUT Ulh — [VU" Ul

by using the KKT condition ¢ i« U i=0 and ¢jkVik=
0, we can obtain the following update rules:

2[YV] i+ 2[U(VTV);
Uik <—MikJ—[ ik T[ (+ )]lk, (16)
20 VTV +a

17)

) T+ T U + AW V) jie
vjk < vjk - n .
T+ v T J +2DV) jie

Theorem 2. The objective function J Semi—-GNMF
SCuin Eq.(6) is nonincreasing under the updating
rules in Eq.16) and Eq.(17).The Euclidean
distance is invariant under these updates if and
only if U and V are at a stationary point of the
distance.

Theorem 2 guarantees the convergence of the
iterations in Eq.(16) and Eq.(17), and the proof will
be given in section 3.4.

Analysis of complexity

After deducing the multiplication update rules of
JSemi—-GNMFSCv and JSemi—-GNMFSCu , we will
form the following program process.  For
simplicity, we on or JSemi-GNMFSCv , while the
program process for JSemi—GNMFSCu is similar.
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Algorithm 1 Semi-GNMFSC, algorithm description

Input: Initial data matrix X = [x4, ...,
Sparsity parameter o

xn] € Rli‘:'XN , Graph regularization parameter A,

Output: Locally optimal solution matrix U, Corresponding coefficient matrix V

1: Initialization: The initial matrix is randomly selected U € RY*K v+ € RV,

2: The initial graph matrix W is constructed from k nearest neighbours, D=Dj;, L=D- W;

3:Fix U and update V according to the formula (8);

4:Fix V and update U according to the formula (10);

5:If itis less than the threshold or exceeds the given number
of iterations, the algorithm terminates. Otherwise, 3;

Meanwhile through Algorithm 1, we will have the
the proposed
algorithm. The steps that affect the complexity of

computational complexity of
Algorithm 1 mainly consist of step 2, step 3, and
step 4. Step 2 is the computation of weight matrix
for constructing the data graph, and its complexity
is O (N 2M ), in step 3, the complexity of calculating
U with one iteration is O (M N K+ N K2), and in step
4, the complexity of calculating V with one iteration
is O (M N K+ N K2+ KM 2. In summary, the
complexity of Semi-GNMFSCv algorithm is O [H{M
N K+ N 2M + N K2 + KM 2)]. Algorithm of Semi-
GNMFSCu has the same complexity.

Convergence proof of Semi-GNMFSC

In this subsection, we will prove the convergence of
(6) and (6). We first introduce the following
definition.

Definition 1.2¢ Z(H, H’) is an auxiliary function for
J(H) if the conditions

Z(H, H')2J(H), Z(H, H) = ](H),
are satisfied.
The auxiliary function is very useful because of the
following lemma. Lemma 1. If Z (H, H®) is an
auxiliary function , then J(H) is nonincreasing under
the update
H®Y = arg minZ (H,H®) (18)
H

Proof. ](H(t+1)) <Z (H(HI), H®W)<Z (H(t), H(t)) = ] (H(f))

Note that | (H®D) = | (H®) only if H® is a local
minimum of Z (H, H®). If the derivatives of ] exist

and are continuous in a small neighborhood of H®
this also implies that the derivatives V] (H®) = 0.
Thus, by iterating the update in (18) we obtain a
sequence of estimates that converge to a local
minimum Hwin = arg minu J(H) of the objective
function:
J(Hwin) <...J (HH*)S [ (H). .. <] (H2) < J(H)< J(Ho).
According to Lemma 2 (see below), Z (H, H’)
defined in (22) is an auxiliary function of | and its
minimum is given by (23). Accordingto (18), H*? «
Hand H® — H'.

Lemma 2. For any matrices A €R?*" ,B € Rk
S € Rk S" € R** , with A and B symmetric, the
following inequality holds:

n K
i 1
b= S’Lp

(19)

Proof. Let Sip = S'ipuip. Using an explicit index,
the difference A between the left-hand side
and the right-hand side can be written as:

n k
_ ’ 2
= Z Z Aij S'jqBapS'ip Uiy — Uipltjq)

Lj=1p,q=1

because A and B are symmetric, this is equal to:

n k 2 2
Uby U
— ’ P+ 7jq
A= E E Aij S'qBgpS'ip ( U U; >
Lj=1p,q=1

2 inUjq
1
= ;Z?] 125 =1 41j 'jq BapS'ip (Uip- g )* 2 =0.
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When B =1 andS is a column vector, (19) reduces to
the result in 2.

Convergence proof of Model (5)

To prove Theorem 1, we need to show that (5) does
not increase under the update step in (8) and (10).
Since the regular and sparse terms in (5) as well as
the non-negative constraint terms are only related
to V, our updated formula for U in Semi-GNMFSCv
is exactly the same as that in Semi-NMF. Therefore,
we can use the convergence proof of Semi-NMF to
show that (5) isnot increased under the update step
in (8). See ? for details. Now, we just need to prove
that (5) isnot incremented under the update step in
(10). Meanwhile, in order to facilitate comparison
with the process in ° we rewrite JSemi—-GN M F
SCV as follows:

J(H) = Tr(~-2HT B + HAHT +AHTDH - \AHT WH) + «
JHI 5, (20)

where A=UTU,B=YTU, and H=V. Finally, J(H)

can be written as follows:

J(H) = Tr(-2[HT BJ* + 2[HT B]- + [HAI'HT- [HAF-HT +
AHT DH- AHTW H) + aJH/ 1. @1)

Lemma 3. Given the objective function J(H)defined

in (21) with all matrices are nonnegative. Then the
following function

’ 7 _ L+Hl
Z(HH')= -2y 2B H'y (1 + Log —)+Zlk By Mt

Hrip
(HA i HE,

ik H’—Lkl — X A H' g H' i (1 +log H’leHle) '

(pH"),, HE e
ALy H,ik - ,12;;(1 Wi H' y H' (1 +log m)

Hp, +H/?
talu gy @
L

is an auxiliary function for J(H), thatis, the auxiliary
Z(HH’)
Furthermore, it is a convex function in H and its

function satisfies Definition 1.

global minimum is

Hy = arg min, Z(H,H') =
H 2B} +2(HIA™) g +2A (W H) i
tk\| 2B, +2(HIA*") i +2A (DHy +a

(23)

Proof. The function J(H) is composed of positive
and negative terms. To establish the validity of the
auxiliary, it is imperative to determine the upper

bound for the positive term and the lower bound
for the negative term. We firstly establish an
upper bound for the positive term. J(H) consists
of four positive terms, i.e., the second, third, fifth,
and seventh terms in (22). The qualifications for
the second and seventh items are proved by the
following two formulas:

Hlk+ ,H (24)

2Hj),

Tr(H"B™) = Xy Hy By <Zy B

HA, +H?
|1 |11=2Zg Hyge < L LI;H( . (25)
ik

The above two formulas use the inequality a < (a2
+b2) /2b for any a>0,b> 0.

For the third and fifth terms in J(H) (the third
item: A =1 and B = A+, the fifth item: B=Iand A =
D), by using Lemma 2, we obtain the upper
bounds estimation:

Ity 2
(H A7) ikHi

Tr(HA*HT) < Xy ————+, (26)
ik
N op2
Tr(H'DH ) < 3, 27)
ik

Until now, J(H) remains three negative terms’
lower bounds to estimate, which are the first,
fourth and sixth terms. We will get the lower
bounds by using the inequality z>1 + log z (for
any z > 0). Then,

e 5 1 4 1og Hix (28)
T = 0og
H ik H l.k
And
H; H;
—k=t > 1+ log HugeHie (29)
Hry Higp H’lkH i

Via (28), the first term in J(H) is estimated in the
following way:

TT(HTB+) = z Bi;Hik =

ik

’ Hj
L BiHjy (1 = logH—;;). (30)

Via (29), the fourth and sixth terms in J(H) are
estimated by

Tr(HA=HT) = Yo Aig o H' i H' ip

(1 + logM), (31)

HrigHrip
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ATr(HT WH) 2 2 T Wee s H' e (1 + log 22810 ) | (32)

Putting (24), (25), (26), (27), (30), (31), (32) together,
we get an auxiliary function Z (H, H’) such that J(H)
<Z(H, H') and J(H) = Z(H, H).

To find the minimum of Z (H, H'), we take
0Z(H,H")

as follows:
0H g

aZ(HH’)__ZB+ Hryge ZBLk-l- Hijy 2(HIAY) pcH g —2 (HIA7) icH i,
OH Hik Hik Hik

+ 2/\ (DH’)lkHlk 2/\ (WH’)lkH’Lk + (XH_ik. (33)
Hiyg Hig Hy

Let 1 =Xyp AieHixc Hiy (1 +log "‘””’)

Hip, HL{’
Hts M

Y AmHL H] (1 + log ,then

ts t{’

X, Ay Hiy H! (1+lo ”‘H’“’)]
[ ¢ Ark ik ig 9 1l L, sz
[Zs A Hiotl 1+ tog B2,

- [ag iy (1 + 10g28e)] H’ik

LkHLk
= /
2(H A )ikHik

5]1

lkH -

ikt ek
(1 +log HlkHl.,k)
Bee Wit HigHi, (1 +log Ltls)

tsHls

7
= A HyHip +AskHsH 0
ik

Let J2- Zlkt’ W, l.’

Then

ah [Z{’ Wy HycHpy (1 + log kHék)]Hk
L

Hij Hyy,

, Hik
VVl.t HtkHlk 1+ lOg Hl H/ H'k
L

!
HikHik )]
HI kH’lk Hik
2(W_H’)'kH'
i H!
+ Wi H; ksz = =
Hig Hijg

- [[/Vii_ HiHix (1 + log

=W, H; ka’k

The Hessian matrix obtained by the second
derivatives is

0*Z (H,H") 5 5.7
OH . 0H,, = 00l ik
With

2[(BH)y + (HA )y + AWH") , 1H',,
ik = 1?2 +
ik
2B + 2 (H'A%)y + 24(DH") 4 +
H'y .

Therefore, Z (H, H') is a convex function of H. Thus,
we obtain the global minimum of Z (H, H') by
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0Z (H, H') /0Hx =0,
in (33), and then (23) follows.
We can now prove the convergence of Theorem 1 by
Lemma 1 and Lemma 3.
Proof of Theorem 1: Replacing Z (H, H®)in (18) b
(22) results in the following update rule:

D — \[ 285 +2 (HIA )y +2A (W HI) .
tk\| 2B +2 (H'A*)y +24 (DH )y + @
Since (22) is an auxiliary function, Jis nonincreasing
under this update rule according to Lemma 1. Let A
=UTU,B=YTF,and H=V, we have (10).

Convergence proof of Model (6)

To prove Theorem 2, we need to prove that (6) does
not increase under the updating steps of (16) and
(17). Since (6) contains only af U/ but af Vi is
missing. The update rule of V in (6) is similar to that
HEHT,
2HIjk
function, and others are the same, so we omit the

in (5), just removing aX term in auxiliary

details here. Now, the remaining is to show the
update rule for U in (16) is exactly the update rule in
(18) with a proper auxiliary function by the
following Lemma.

Lemma 4. The function

Z(H, H')

2 2 I\ o2 8+

=y H Bik *Bi +3 Hig) " A(Hjg)
ik Hig™ o7 ik ot !
ik ik

Z 2H}: B}, (1 + log —) ZAH(H”() (Hi)"

ik ikt

HLkHw
(1 +log (Hi’k)_(Hi’l)_) (34)

2 2
Hijj +Hjje
!

+aXy

is an auxiliary function for the objective function of
J(H) in (6):
J (H) = Tr[-2[BTHJ* +2[BTH]- +[HA(HT)[*

~[HAH)I] + af HI! 39)

withA=VTV,B=YV,and H=U.

Proof.
_ _ BZ B’Z
T, (BT H™) = Xy Hig By < Ly Hi ;’;:;kr
I Nt a2
T (HY AQHTY ] < By S0
(HpO+

2 Hi}

Hik Hik
HIly = 2y Hye <X =7
ik
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The above are the positive terms in the auxiliary
function, and then give the negative ones:

ik

, By
T, (BT H*) = ZH{,; By > Z H{. B}, (1 = log B—>
ik ik

TUHACHTY 12 ) Ay Hi) (Hl)
ikt

(1 +10g 55 )
(Hge)™ (Hip)

From the above inequality we can get: Z (H, H’) >

J(H). That is, the auxiliary function is valid.

The analysis of the rest of this section is the same as
section 3.4.1.

EXPERIMENTS AND RESULTS ANALYSIS

This section will conduct experiments on image
datasets with different noise levels based on the
models and update algorithms outlined in Section 3
to verify the effectiveness of denoising methods for
clustering.

Datasets

Five commonly utilized datasets will be employed
in the experimental analysis, and a comprehensive
depiction of these datasets used in the clustering

task is provided in Table 1.

Table 1 : Statistics of the data sets

Samples Features Classes
Databases N) ™) ©)
ORL 400 1024 40
COIL20 1440 1024 20
Yale 165 1024 15
PIE 2586 1024 68
AR 2600 1024 100

* COIL20 dataset 3 The dataset includes 20 types of
images depicting various objects, each captured at 5-
in the
resulting in a total of 72 images capturing different

degree intervals horizontal direction,

angles within a 360-degree range. Consequently, the

dataset consists of a total of 1440 grayscale images.

* Yale dataset ! This dataset consists of 15 categories
of images, each with 11 images, resulting in a total
of 165 grayscale images depicting human facial
features. Each person’s portrait exhibits different
characteristics, such as the presence or absence of
glasses, different lighting directions (left, center,
right), and emotional expression (joyful, neutral,
melancholic).

* AR dataset 33The dataset comprises 50 male and
50 female subjects, each with 26 images, resulting in
a total of 2600 images.

* PIE dataset # The dataset comprises 2586 images
captured by 68 individuals, and each of them is
presented with 42 grayscale images featuring four
distinct facial expressions and varying lighting
conditions.

* ORL dataset ¥ The dataset comprises 400 images
featuring 40 distinct with 10
photographs captured for each individual. These

individuals,

images were obtained under varying conditions,
including different lighting, facial expressions, and
details.

Comparison algorithms

In order to fairly demonstrate the performance of
the Semi-GNMFSC algorithm, we will compare it
with K-means, PCA, and six others classic NMF
algorithms. Here is an introduction to these classic
algorithms being compared.

* K-means #2! The algorithm operates on the
original matrix and does not perform operations
such as extracting and utilizing the information
contained in the original matrix .

¢ PCA 32 Principal component analysis, which is
widely used in data dimensionality reduction, can
extract the main components of the data set.

* NMF 2425 The core purpose of this algorithm is to
represent the original matrix as the product of two
non-negative factor matrices, and the dimensions of
the two factor matrices are much smaller than the

610



original matrix. The following algorithms (including
those in this paper) are based on this idea.

* NMFSC 1712 The algorithm aims to produce
sparse representations and represent the data as a
linear combination of a small number of basis
vectors.

* ONMF(basic matrix orthogonal) ¢ This algorithm
adds orthogonal constraints to the basic matrix based
on NMF.

e NeNMF ! It applies Nesterov's optimal gradient
method to alternatively optimize one factor with
another.

e Semi-NMF 10 Unlike classical NMF, Semi-NMF

only requires non-negative constraints on the

coefficient matrix V.

® GNMF ¢ This algorithm combines graph theory,
manifold assumption, and NMF algorithm to
construct neighborhood graphs that preserve the
inherent geometric structure of the data.

The other implementation details of this paper are
presented as follows:

(1). After factorizing the matrices, this paper will use
the K-means algorithm to perform clustering
analysis on the target dataset.

(2). For models with graph constraintin GNMF and
Semi-GNMEFSC, the 0-1 weighting schemeis adopted
and the number of nearest neighbors is set to 20.

(3). For all comparison algorithms, experimental
operations will be conducted based on the original
papers or source code of these algorithms. At the
same time, the parameters

corresponding paper or code will also be set

involved in the

according to the values in the original text to obtain
the best performance of the comparison

algorithms.

4). To
initialization, repeat each algorithm 10

reduce the randomness caused by

times and report the average clustering results of
these 10 runs.

Evaluation indicators

In order to measure the clustering performance,

The Journal of Reproductive Medicine®

we will use three commonly used clustering
evaluation indicators: clustering accuracy (ACC),
normalized mutual information (NMI) and purity
(Purity). The process of calculating these three
indicators is achieved by comparing the obtained
labels with the real labels.

ACC is usually used to measure the percentage of
labels data set
containing n images, for each sample image, let /i

correct obtained. Given a

be the clustering label obtained by applying some
algorithm, and ri be the label provided by the data
set, then the ACC is defined by

=10 (Ti,map(li))
n )

AAC =

where 6(x, y) is the classic delta function (6(x, y)
equals to 1 if x =y and equals to 0 otherwise). The
function map (I;) is the mapping function that
maps each clustering label /ito the equivalent label
from the data set.

Mutual information is usually used to measure
the similarity of two clusters. Suppose there are
two clustering results C and C’, the mutual
information is defined by

p(cpcrj)
pleoc’y

MI(C, C) =2, eccecp(cc)).log

where p (ci)) and p (c'j) represent the probability
that the sample belongs to class ci and class cj
,;respectively. The probability p (ci, c’j) represents
the joint probability that the sample belongs to
both class ciand class ¢j. So the definition of NMI
is as follows:

NMIC,C)=

M I(CCr)
max (H(C),H (C")) *
The Purity indicator is generally used to measure
the purity between the clustered labels and the
true labels, thatis, whether the data is classified
into one category after clustering, with a high
probability of being classified into the same
category. The formulas for Purity is defined as
follows: ‘
maxij n]
Purity = Z{-‘zl—lj\]( L),
Whare nij denotes the number of j input classes
that are assigned to the i-th class, and N is the
total number of samples.

It is easy to see that the ranges of the above are
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both within [0, 1], and the larger the value, the better
the performance.

Parameter Selection

The performance demonstration of algorithms cannot
be achieved without the help of good parameters. So,
this subsection will useexperiments to demonstrate the
selection of parameters. The regularization parameter
A and the sparsity parameter a are two highly crucial
parameters in the algorithm, whose values will directly
affect the convergence speed and performance of the
algorithm. Therefore, this paper will evaluate the
influence of different parameter values on performance
through a large number of experiments. We will test
the effects of different parameter values on the
performance of the proposed algorithm on five
classical data Meanwhile, with
tradition, o and A will be within the scope of the fol-
lowing set: {10-1, 109, 10%, 102, 103}. The experimental
results are summarized and the clustering performance

sets. consistent

results corresponding to different parameter values in
the Semi-GNMFSCv algorithm are shown as follows.

From the Figure 1to 5, it can be seen that the clustering
performance of Semi-GNMFSC algorithm changes
with the different values of a and A parameters.
According to the Figure 1, in the COIL20 data set, when
the sparsity parameter a = 1 and the regularization
parameter A =100, the values of NMI, ACC and Purity
are all the highest, which that the
performance of Semi-GNMEFSCv algorithm is optimal
under a =1 and A = 100. Similarly (omitting details),
observing the experimental results on the other four

indicates

data sets, the performance of the algorithm is also
optimal when a =1, A = 100. Furthermore (omitting
details), we will get the experimental results of the
parameter selection for the Semi-GNMFSCu algorithm,
where the selection results for

Figure 1 : The COIL20 dataset, Semi-GNMFSCyv
algorithm clustering performance and the relationship
between the parameter value.

The ORL dataset, Semi-GNMFSCv
and the
relationship between the parameter value.

Figure 2 :

algorithm  clustering performance

ACC I

Figure 3 : The Yale dataset,
algorithm  clustering performance

Semi-GNMFSCv
and the
relationship between the parameter value.

parameters a and A are alsoa =1 and A = 100. So,
in the following experiments, we will set a=1, A=
100.

The AR dataset,

Figure 4
algorithm clustering performance

Semi-GNMFSCv
and the
relationship between the parameter value.

Figure 5 The PIE dataset, Semi-GNMFSCv
algorithm and the
relationship between the parameter value.

clustering performance

e

Figure 6 : Images with Vafying degrees of Salt and
pepper noise

612



The Journal of Reproductive Medicine®

Figure 7 : Images with varying degrees of Gaussian  Discussion on clustering performance
noise

In this subsection, we show the effectiveness of
Semi-GNMFSC algorithm by comparing a large
number of clustering experiments. In these
experiments, the dimension K of the feature
subspace was taken as 5, 10, 20, 30, 40 and 50,
respectively.

Note that the decimal values in the two columns on
the far right of all tables are the results of the
algorithms proposed in this paper.

(a) Original image (b) 0.001 (c) 0.01 (d) 0.1
For the purpose of providing a clearer view of
Using the two forms of noisy images mentioned experimental results, the best clustering values are

above, we will conduct clustering experiments on  jn bold for all datasets. Please refer to the detailed
COIL20 and Yale datasets and form the following four  ya]es provided in Table 2- Table 6.

tables.

Table 2 : Clustering results of different algorithms on COIL20 data

K- Semi- Semi- Semi-
K means PCA NMF NMFSC NME GNMF ONMF NeNMF GNMFSCy GNMFSCu
5 0.5088 0.6543 0.5243 0.5868 0.5863 0.6833 0.6121 0.5521 0.6681 0.6588
10 04811 0.6052 0.5043 05768 05713 0.6521 05839  0.5354 0.6558 0.6781
20 04527 05843 04775 05721 05689 0.6479 05732  0.5023 0.7826 0.7954
30 04202 05633 04522 05567 05201 0.6084 0.5631 0.4932 0.8132 0.8267
40 04055 0.5454 04324 05299 05132 05933 05412 04746 0.8109 0.8043
50 03790 0.5041 03853 04975 04025 05764 04866 04574 0.7868 0.7917

NMI
5 07169 0.7643 0.7243 07168 0.7313 0.8333 0.8233  0.7132 0.7760 0.7675
10 0.7267 0.7526 0.7134 0.7080 0.7180 0.8321 0.8132  0.7025 0.8325 0.8316
20 0.7051 0.7439 0.7011 0.6951 0.7041 0.8145 0.8020 0.7023 0.8966 0.8999
30 0.6923 0.7367 0.6991 0.6877 0.6906 0.8088 0.7924  0.6924 0.9202 0.9245
40 0.6888 0.7243 0.6865 0.6799 0.6853 0.8012 0.7832  0.6824 0.8934 0.8985
50 0.6711 0.7143 0.6853 0.6675 0.6825 0.7983 0.7866  0.6810 0.8283 0.8396
Purity

5 05172 0.6359 05543 0.6168 0.6113 0.7133 0.6933  0.6033 0.6556 0.6467
10 0.5107 0.6243 0.5483 0.6132 0.6007 0.7076 0.6924  0.5944 0.7229 0.7211
20 05081 0.6047 05300 0.5825 0.5925 0.6833 0.6888  0.5888 0.8306 0.8335
30 04981 05943 05265 05775 0.5844 0.6744 0.6732 05732 0.8556 0.8610
40 04834 0.5888 0.5125 0.5682 0.5450 0.6678 0.6611 0.5611 0.8354 0.8348
50 04711 05742 05153 05566 0.5325 0.6549 0.6566  0.5566 0.7632 0.8396
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Table 3 : Clustering results of different algorithms on ORL data

ACC
K ieans PCA NMF NMEFSC Is\;\r/r;; GNMF ONMF NeNMF ZZIKAFS o fzeg;/n:s .
5 03525 04843 02743 04368 03813 04475 03925 04632 04525 0.4775
10 04511 04721 02610 04250 03675 0.4600 03875 04525 04825 0.4975
20 04213 04443 01961 04175 03750 0.4525 03732 04432  0.4575 0.4613
30 04122 04477 0.1640 04050 04150 04433 03628 04332 05075 0.4925
40 04011 04819 01553 03975 04025 04232 03766 04032  0.4888 0.4900
50 03959 04743 01478 03932 03921 04123 03621 03932  0.4794 0.4650
NMI
5 05491 06043 05643 05868 05813 06698 06258 06133  0.664 0.6743
10 05353 05911 05550 05750 05923 0.6853 0.6175 06062  0.693 0.6932
20 05251 05842 05311 05851 05841 06537 05919 05941  0.6798 0.6803
30 05115 05755 05262 0564 05706 0.6433 05888 05804  0.6921 0.6864
40 05011 05639 05153 05475 05625 0.6365 05766 05739  0.6700 0.6713
50 04921 05511 05003 05358 05401 06274 05675 05518  0.6672 0.6671
Purity
5 05175 05243 05001 05668 05413 0.4498 0425 04962  0.4950 0.5800
10 04981 05702 05025 04650 03875 05075 04923 05800 05975 0.6000
20 04888 05511 04900 05525 04125 05425 04872 05611 05775 0.5750
30 04752 05473 04829 05375 04625 05033 04575 05437  0.5525 0.5400
40 04645 05299 04753 04975 04025 04932 04866 05123 05410 0.5425
50 04534 05145 04625 04875 03850 04833 04455 05078 05350 0.5375

Based on the findings presented in the table above, it
that the Semi-GNMFSC model
outperforms other models to a significant degree.

is evident

This superiority can be primarily attributed to the
synergistic impact of sparse constraint and graph
regularization constraint. Through summarizingand
scrutinizing the experimental outcomes across the
aforementioned five datasets, a comprehensive
analysis of the results can be derived.

(1) Firstly, the Semi-GNMFSCU algorithm has
exhibited superior performance across all five
datasets and displayed robust stability in handling
diverse types of data. Specifically, in the COIL20
dataset, compared to the worst performing NMF,
Semi-GNMFSCU has  achieved the highest
improvements in ACC, NMI, and Purity by 41.27%,

22.79%, and 6.85% respectively. In the ORL dataset,
compared with the worst performing NMF, Semi-
GNMFSCu has achieved the highest improvements in
ACC, NMI, and Purity by 33.47%, 16.02% and 7.5%
respectively. In the PIE dataset, compared with the
worst-performing Semi-NMF, Semi-GNMFSCU has
achieved the highest improvements in ACC, NMI, and
Purity by 11.56%, 14.46% and 13.79% respectively. In
the AR dataset, compared with the worst-performing
GNMEF, Semi- GNMFSCU has achieved the highest
improvements in ACC, NMI, and Purity by 38.75%,
34.38%, and 35.95% respectively. In the Yale dataset,
compared to the worst performing Semi-NMF, Semi-
GNMFSCu has achieved the highest improvements in
ACC, NM], and Purity by 17.01%, 18.7% and 19.85%
respectively. The superior performance of the Semi-
GNMFSCU algorithm can be attributed to the
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Table 4 : Clustering results of different algorithms on PIE data

ACC
K- Semi- Semi- Semi-

K means PCA NMF NMFSC NMEF GNMF ONMF NeNMF GNMESCy  GNMFSCo
5 0.0950 0.1432 0.0770 0.0768 0.0668 0.1783 0.0720 0.1032 0.1356 0.1499
10 0.0938 0.1143 0.1108 0.1005 0.0836 0.1740 0.0788  0.0988 0.1816 0.1729
20 0.0949 0.1042 0.0975 0.0921 0.0789 0.1613 0.0692  0.0932 0.1860 0.1724
30 0.0958 0.0999 0.0896 0.0901 0.0701 0.1532 0.0669 0.0830 0.1707 0.1857
40 0.0854 0.0970 0.0824 0.0899 0.0699 0.1468 0.0572 0.0762 0.1533 0.1553
50 0.0810 0.0888 0.0653 0.0795 0.0683 0.1436 0.0566  0.0731 0.1439 0.1566

NMI
5 02215 02543 0.1938 0.1933 0.1915 0.3611 0.1716  0.2632 0.3040 0.3109
10 0.2242 02369 0.2635 0.2367 02609 0.3535 0.1976 0.2724 0.3626 0.3494
20 02190 02211 02511 02151 0.2541 0.3433 0.1820 0.2723 0.3547 0.3490
30 02136 02143 0.2439 0.2091 0.2406 0.3307 0.1770 0.2838 0.3321 0.3441
40 02067 02009 02265 02000 0.2453 03274 0.1732 0.2724 0.3433 0.3542
50 02011 0.2000 02153 0.1975 0.1825 03133 0.1666 0.2510 0.3261 0.3271

Purity
5 01148 0.1443 0.0903 0.0938 0.0764 0.2056 0.0863 0.1133 0.1622 0.1785
10 0.1127 0.1341 0.1295 0.1142 0.0951 0.1760 0.0939  0.1022 0.1781 0.1765
20 0.1155 0.1167 0.1000 0.1025 0.0825 0.1833 0.0833  0.0988 0.1921 0.1966
30 0.1079 0.1043 0.1067 0.1065 0.0731 0.1692 0.0825 0.0924 0.1799 0.1982
40 0.0881 0.0944 0.0825 0.0973 0.0650 0.1533 0.0733  0.0811 0.1842 0.1939
50 0.0711 0.0943 0.0853 0.0877 0.0625 0.1422 0.0633 0.0766 0.2061 0.2004

effects of sparse constraint and graph regularization
constraint. Incorporating a sparse constraint into the
basis matrix U leads to a more sparsely represented
basis matrix, thereby
representation capability of the model. Furthermore,

enhancing the local

the inclusion of a graph regularization term
effectively constrains the coefficient matrix to better
preserve latent geometric structure information
within the dataset.

(2) Secondly, Semi-GNMEFSCv exhibits a slightly
lower performance in clustering compared to the
Semi-GNMEFSCu model. The reason analysis is as
follows. Although the addition of sparse constraints
to the coefficient matrix in the Semi-GNMFSCV
model results in a sparser matrix representation, it is
crucial to note that while the coefficient matrix V
serves as a substitute for the original data matrix after
dimensionality reduction, there is a risk of over-

reduction. That is to say, the incorporation of
sparse constraints do not necessarily enhance local
representation effects like in the basis matrix U ,
instead, it has the potential to compromise essential
within the data and
consequently diminish clustering performance.

latent  information
The experimental results also confirmed that the
clustering performance of the Semi-GNMFSCy
model is remarkably inferior to that of the Semi-
GNMFSCu model. Consequently, the Semi-
GNMFSCu model exhibits strong applicability and
In future research, we will
furthermore investigate how to adequately harness

generalization.

the advantages of sparse constraint and graph

regularization constraint in coordination to
enhance the adaptability and robustness of the
model in various complex scenarios.

(3) Thirdly, the Semi-GNMEFSC algorithm exhibits
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Table 5 : Clustering results of different algorithms on AR data

ACC
K K- PCA NMF NMFSC Semi- GNMF ONMF NeNMF Semi- Semi-
means NMF GNMFSCv ~ GNMFSCu
5 03798 03744 02762  0.2732 0.2494  0.0417  0.3196 0.2827 0.3863 0.3988
10 03857 04316 0.3071  0.3268 0.2423  0.0810  0.3387 0.3339 0.4512 0.4685
20 03774 04243 03643  0.3875 03161  0.1429  0.3431 0.3245 0.4583 0.4958
30 03792 04107 03425  0.3851 0.3268  0.2101  0.3631 0.4732 0.4845 0.5024
40 0.3647 0.4243 0.4054  0.3786 04048  0.2399  0.3412 0.5068 0.4571 0.5107
50 0.3821 0.4337 0.4381  0.4411 03768  0.2964  0.3388 0.5125 0.4464 0.5095
NMI
5 0.637  0.6543  0.6422  0.6220 0.5998  0.3498  0.6604 0.6277 0.6886 0.6936
10  0.6478 0.6679 0.6504  0.6641 05774  0.4297  0.6797 0.6689 0.7293 0.7313
20 0.6597 0.6812 0.6916  0.6999 0.6346  0.5603  0.6899 0.7410 0.7462 0.7533
30 0.6667 0.6831 07143  0.7078 0.6373  0.6258  0.7024 0.7621 0.7526 0.7605
40 0.6676 0.6843 0.7173  0.7032 0.6853  0.6618  0.7532 0.7640 0.7482 0.7671
50 0.6511 0.6743 0.7053  0.7075 0.6025 0.6833  0.7167 0.7991 0.7411 0.7643
Purity
5 03298 0.3643 0.2964  0.2911 0.2762  0.0417  0.3470 0.2994 0.3792 0.4226
10 03300 0.4544  0.328 0.3494 0.2583  0.0810  0.3768 0.3542 0.4512 0.4815
20 0.3107 04781 03929  0.4071 0.3423  0.1429  0.3917 0.4649 0.4833 0.5024
30 0.3081 0.4523 0.4000  0.4375 04625 0.2327  0.3832 0.4732 0.4845 0.5089
40 0.3177 0.4632 0.4125  0.4175 0.4850  0.2535  0.3902 0.5125 0.4744 0.5190
50 0.3011 0.4243 0.4053  0.4975 0.4025 02542  0.4129 0.5318 0.4464 0.5155

strong adaptability in datasets of varying scales
and complexities. Whether dealing with tiny-scale,
straight forward data or large-scale, intricate data,
the algorithm consistently achieves effective
clustering and delivers satisfactory outcomes.
These findings underscore the broad applicability
of the Semi-GNMFSC algorithm and its capacity to
diverse practical
scenarios, thereby offering crucial support for data
analysis and dimensionality reduction.

(4) Finally, it is essential to highlight that while the
Semi-GNMFSCu model demonstrates superior

showcase advantages in

performance in handling datasets such as COIL20,
Yale and AR. Next, in the presence of noise, we
will mainly test our algorithm on the well
performing (without noise) COIL2 and Yale
datasets, as a special case to illustrate the
advantages of our algorithm. Of course, even with
these well performing datasets, there is still room
for improvement in our algorithms. Therefore,
additional additional optimization
crucial area for future research, thus paving the

remains a

way for different avenues of investigation.
Discussion on Noise Robustness

In the above experiments, the performance of the
proposed method is better than that of the
comparison methods. In order to further prove the
robustness of Semi-GNMFSC model, we carry out
experiments on noisy data. In particular, in our
experiments, we consider two types of noise
including salt and pepper noise and Gaussian
noise. For simplicity, consider only the case where
the feature dimension K = 30, and then we will
conduct experiments on the COIL20 and Yale
datasets. First, salt and pepper noise with noise
level (density) 20%, 40% and 60% is added to the
dataset, respectively.

Next, we add Gaussian noise with a mean of 0 and
variances within {0.001, 0.01, 0.1} to the dataset,
called light, medium, and heavy noise conditions in
this test. Part of the data sets with noise image is
displayed as follows:
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ACC
K- Semi- Semi- Semi-
K means PCA NMF NMFSC NME GNMF ONMF NeNMF GNMESCy  GNMFSCo
5 03394 04143 03242 03758 0400 03333 03879 0.3818 0.4061 04176
10 0.3136 03752 0.3273 03697 0.3455 03091 0.3870 0.3576 04161 0.4073
20 0.3276 0.3443 0.3455 0.3818 0.3152 0.3212 0.3455  0.3488 0.4444 0.4212
30 0.3394 0.3633 0.3636 0.3030 0.2606 0.3394 0.3424  0.3558 0.3981 0.4052
40 03055 0.3454 03324 03299 02132 03433 03112  0.3746 0.3771 0.3833
50 03394 03541 03212 03515 02303 03152 0.3818 0.3030 0.3868 0.3897
NMI
5 04201 04447 03561 04504 0.4494 0.3873 04572  0.4479 0.4831 0.4972
10 03825 0.4026 0.3868 04431 04203 0.3727 04436 0.4438 0.4833 0.4818
20 03988 04088 03933 04099 03725 03743 04018 0.4097 0.4851 0.4798
30 04077 04265 04035 03924 02911 03818 04126 0.4222 0.4719 0.4781
40 04188 04578 0.3965 04499 0.3153 03012 04432 04324 0.4529 0.4694
50 04017 04299 04125 04293 02854 03716 04311 0.3854 0.4483 0.4555
Purity
5 03515 04059 03242 04000 04061 03333 03697 0.3879 04115 0.4186
10 0.3636 0.3822 0.3636 03879 03697 0.3212 04000 0.3697 0.4128 0.4033
20 0.3439 0.3647 0.3758 03700 0.3273 03394 0.3576  0.3758 0.4222 04211
30 0.3558 0.3743 03817 03555 0.2788 0.3333 0.3424 0.3769 0.4694 0.4773
40 0.3434 03688 03125 03682 0.3450 03678 0.3213 0.3611 0.4084 0.4094
50 0.3577 0.3811 0.3428 03576 0.2424 03273 03761 0.3273 0.3682 0.3702
Table 7 : Clustering results of COIL20 data set containing salt-and-pepper noise
ACC
Noise K- PCA NMF ONMF GNMF NMFSC Semi- NeNMF Semi- Semi-
Density means NMF GNMFSCv ~ GNMFSCu
20% 04317 0.4998 04896 0.6229 0.6924 04882 0.5181 0.5366 0.7153 0.7177
40% 04196 04835 04713 04924 04486 04711 04333 0.4982 0.6160 0.6098
60% 0.2729 0.2617 0.2521 0.2833 0.1847 0.2333 0.1549 0.2444 0.3701 0.3753
NMI
20%  0.6598 0.6871 0.6777 0.7516 0.8291 0.6711 0.657 0.6724 0.8455 0.846
40% 05074 0.5623 0.5674 0.5896 05318 05641 0.5309 05123 0.6921 0.6999
60% 03787 0.3399 0.3012 0.3507 0.3521 03029 03199 0.3749 0.4354 0.4321
Purity
20% 04498 0.5020 0.5177 05316 05291 04723 0457  0.4619 0.7455 0.7500
40% 04274 04483 04674 04819 04318 04508 04308 0.4488 0.5921 0.5853
60% 02297 02471 02512 02604 0.2584 0.2308 0.2185 0.2231 0.3554 0.3642
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Table 8 : Clustering results of Yale data set containing salt-and-pepper noise

ACC
Noise K- Semi- Semi- Semi-
Density means PCA- NME  ONME  GNMF - NMFSC NMF NeNMEF GNMFSCy ~ GNMFSCu
20% 04317 0.4998 0.4896 0.6229 0.6924 04882 0.5181 0.5366 0.7153 0.7177
40% 04196 04835 04713 04924 04486 04711 04333 04982 0.6160 0.6098
60% 0.2729 0.2617 0.2521 0.2833 0.1847  0.2333 0.1549 0.2444 0.3701 0.3753
NMI
20% 0.6598 0.6871 0.6777 0.7516 0.8291 0.6711 0.6570 0.6724 0.8455 0.8460
40% 0.5074 0.5623 0.5674 05896 05318 05641 0.5309 0.5123 0.6921 0.6999
60% 0.3787 03399 0.3012 03507 03521 03029 0.3199 0.3749 0.4354 0.4321
Purity
20% 0.4498 0.5020 0.5177 0.5316 0.5291 04723 04570 04619 0.7455 0.7500
40% 04274 04483 04674 04819 04318 04508 0.4308 0.4488 0.5921 0.5853
60% 02297 0.2471 02512 02604 0.2584 0.2308 0.2185 0.2231 0.3554 0.3642

From the above experimental results, it can be seen that
the Semi-GNMFSC algorithm proposed in this paper
has strong robustness. By observing the above tables,
we can draw the following conclusions:

(1). As the level of noise fluctuates from light to heavy,
there is a significant decrease in the performance of all
algorithms, indicating that noise interference has a
detrimental impact on image clustering. Semi-
GNMESCV Semi-GNMFSCU
robustness against noise by achieving favorable results
across multiple datasets. For the COIL20 dataset with
pepper and saltnoise, the Semi-GNMFSCU algorithm
has significant
clustering indicators com- pared to other methods:
ACC increased by up to 28.6%, NMI increased by up to
19.27%, and Purity increased by up to 30.02%.
Similarly, in the presence of Gaussian noise, the Semi-

and demonstrate

demonstrated improvements in

GNMFSCu algorithm showed improved performance
with an increase of up to 15.64%in ACC, up to 21.26%
in NMI, and up to 22.47% in Purity when compared
with other COIL20 dataset.
Furthermore, on the Yale dataset containing various
levels of Gaussiannoiseand pepper-and-salt noise, the
Semi-GNMFSCU exhibits
clustering performance. Of course, for the Semi-

methods on the

algorithm superior

GNMESCy algorithm, its performance’s improvement
is also more
Notably, even under noisy conditions, our algorithms
effectively extract hidden feature information from

comprehensive (omitting details).

data while maintaining strong accuracy and reliability.
(2). Based on the tables above, it is evident that the
Semi-GNMFSCu
robustness

model demonstrates  superior
in a comprehensive evaluation. This
indicates its ability to maintain consistent performance
across diverse and complex scenarios, showcasing
strong resistance to interference and a high level of

generalization. It is worth noting that the Semi-

GNMEFSCv  model also exhibits commendable
robustness, ranking closely behind the Semi-
GNMFSCu model. Overall, both models display

impressive resilience. Through our experiments, we
can conclude that when facing a large amount of
contaminated redundant data in the original matrix,
introducing sparse constraints into the basis matrix U
and using the Semi-GNMFSCu algorithm
effectively identify the potential expressive feature

can

data. Consequently, this approach mitigates the impact
of contaminated data and enhances overall model
robustness.

(3). The Semi-GNMFSCV model, which introduces
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Table 9 : Clustering results of COIL20 data set containing Gaussian noise

ACC
Varimce means  PCA NMFONMF GNME NMFSC U NeNMF (U o Nhe
0.001 0.5454 0.5877 0.5642 05703 0.6222 05681 0.6090 0.5933 0.6899 0.7018
0.01 0.5372 05643 0.5444 05333 0.5583 05181 0.5653 0.5699 0.6475 0.6470
0.1 0.5242 0.5200 0.5021 0.4950 05190 04874 05283 0.5321 0.6006 0.6111
NMI
0.001 0.6866 0.7453 0.7345 0.7516 0.8308  0.6957 0.6976 0.8122 0.8888 0.8992
0.01 0.6528 0.7095 0.6953 0.7567 0.8150 0.7183 0.7284 0.7439 0.8428 0.842
0.1 0.6032 0.6879 0.6687 0.7203 0.7911 0.7068 0.6974 0.7092 0.8015 0.8194
Purity
0.001 0.6798 0.6999 0.6877 0.6916 0.7291 0.6711 0.6627 0.7124 0.7955 0.7966
0.01 04674 05075 04874 05896 05318 05141 0.5309 0.5439 0.6921 0.6800
0.1 0.3787 0.3904 0.3812 0.3507 0.3521 0.3429 03499 0.3524 0.4354 0.4483

Table 10 : Clustering results of Yale data set containing Gaussian noise

ACC
Varance_mems TCA NMPONMF GNME NMPSC S0 NeNME Gl G,
0.001 03394 03777 03576 03879 03212 03311 0.3467 0.3563 0.3909 0.4013
0.01 0.2839 0.3102 0.2921 0.3161 0.3152 03033 0.3064 0.3222 0.3800 0.3778
0.1 0.2027 0.2200 0.2145 0.2252 0.2109 0.2009 0.2082 0.2209 0.2788 0.2875
NMI
0.001 03519 0.4285 04266 0.4383 0.3977 0.3899 0.3924 04075 0.4451 0.4506
0.01 0.3476 03827 0.3222 0.4041 03616 0.3852 0.3550 0.3799 0.4185 0.4198
0.1 0.3130 0.3608 0.3069 03762 03574 03616 03271 0.3421 0.3836 0.3954
Purity
0.001 0.3398 0.3598 0.3577 0.3616 0.3595 0.3511 0.3570 0.3603 0.3955 0.3975
0.01 0.2974 03089 0.3071 03196 03099 03141 03169 0.3198 0.3521 0.3500
0.1 02187 0.2271 0.2212 0.2307 0.2299 0.2329 0.2401  0.2500 0.2554 0.2675

sparse constraints into the coefficient matrix V exhibits
a slight lower superiority over the Semi-GNMFSCu
model in terms of enhancing robustness. This is
attributed to the fact that the Semi-GNMFSCv model
enforces sparse constraints on the coefficient matrix,
resulting in the exclusion of numerous contaminated
feature data and yielding a more transparent and
sparser coefficient matrix. But compared to the Semi-
GNMEFSCu algorithm, this sparsity enhancement is
slightly excessive, and it is possible that the

appropriate sparsity has already been transmitted to
the matrix V in the Semi-GNMFSCu algorithm. Note
that the coefficient matrix serves as a proxy for the
original matrix in subsequent data clustering
operations. From the experimental results, it can be
seen that an appropriate enhancement of V sparsity
helps to comprehensively enhance the robustness of
the model.

(4). Of course, although the overall performance of
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the Semi-GNMFSCv  algorithm is slightly
unsatisfactory than Semi-GNMFSCu, we should
alsosee that the Semi-GNMFSCv model with sparse
constraints also performs well on a slightly smaller
scale. It not only improves the robustness to noise
interference and outliers to a certain extent, but also
effectively reduces redundant information between
features, thereby helping to extract more
representative  and  discriminative  features.
Therefore, the Semi-GNMFSCV algorithm has also
produced more accurate and reliable results in data
clustering tasks, which is worth further application

and research.
CONCLUSIONS AND FUTURE RESEARCH

In this paper, firstly, we have introduced the idea of
Semi-NMF algorithm and [:1 sparse constraint
together to graph based factorization method, and
then we have established a new type of Semi-NMF
model (Semi-GNMFSC). The aim is to relax the
constraints to get better performance on the original
matrix and factorized matrices. More importantly,
we provide the multiplication update rules and the
convergence theorems (with proofs), which has
been alsoused for analyzing experiments. It should
be emphasized that the combination of semi-NMF,
GNMEF, and sparse constraints is the characteristic
of this paper.

So, as a conclusion, there are two questions that
may bring more interesting work in the near future.
(1) In this paper, Euclidean distance is used to
measure loss and define loss functions, but there are
many ways to measure residuals on the real, such
as the common [-divergence, so in the future
research work, we can choose different loss and
loss functions according to different real
applications.

(2) The construction of manifold structure is the
focus of manifold regularization algorithm, and the
construction of graph will directly affect the
performance of the algorithm. At present, a large
number of graph construction methods have been
different
construction methods are suitable for different data

proposed,  and structure-relation

sets. Therefore, how to combine manifold to
establish models under NMF algorithm is still a

fascinating problem.
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