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Abstract 

Non-negative matrix factorization (NMF) is an effective local feature extraction algorithm with non-negative matrix 

constraints. In order to obtain a NMF-based algorithm with better clustering performance and stronger robustness, 

this paper propose a new non-negative matrix factorization method called Graph Regular- ized Semi-NMF under 

sparse constraints (Semi-GNMFSC). This model embeds a Laplacian regularization term on the basis of Semi-NMF, 

keeps the corre- lation information of high-dimensional space samples, and maps effectively to low-dimensional space, 

thus improving the learning ability of algorithm space and making full use of the inherent geometry of data 

distribution. Note that GNMF algorithm is deficient in robustness, that is, it is susceptible to problems such as noise. 

So, by adding l1 norm sparse constraint to the basis matrix and coefficient matrix of the model respectively, the 

sparsity of the low-dimensional representa- tion matrix can be improved, clearer data can be obtained to approximate 

the high-dimensional matrix, and problems such as the influence of noise introduced in data reconstruction and the 

reduction of data clustering performance can be solved, and the adjustment of data eigenvalues and sparse constraints 

in the matrix can be realized. More importantly, the iterative optimization scheme of Semi-GNMFSC is derived in 

this paper, and the convergence of the algorithm is proved theoretically. In addition, clustering experiments have been 

conducted on 5 different types and sizes of public image datasets, and compared with K-means, PCA, and other NMF 

variants to verify the superiority of the Semi-GNMFSC algorithm in the three clustering performance indicators of 

ACC, NMI, and Purity. 

BACKGROUND 

Image recognition is a prominent area of study 

within the realm of computer vision, with a plethora 

of algorithms proposed for the purpose of 

recognizing images within pristine datasets.7,20,47 

However, in numerous practical scenarios, images 

are inevitably impacted by occlu- sions, weather 

conditions, and environmental factors.48,23  Moreover, 

images in reality are inherently noisy. This will have 

varying degrees of impact on subsequent processing 

tasks such as image clustering, segmentation, fea- 

ture extraction, and edge detection. Therefore, the 

selection of an appropriate method for image 

noise reduction to eliminate interference is a 

critical step in the field of image recognition. 

The dimensionality of image data typically 

presents a challenge, impacting the accuracy of 

classification and the computational time 

required for related calculations on target images. 

So, it is imperative to reduce the dimensionality 

of image data. Note that the objective of 

dimensionality reduction technology is not only 

to eliminate redundant dimensions but also to 

preserve valuable dimensions, to achieve low-

rank approximation for high-dimensional data. 
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 Of course, many methods meet the above 

requirements. Next, we will list some classic 

dimensionality reduction methods. Prin- cipal 

component analysis (PCA) 22 stands as one of the 

most conventional techniques for dimensionality 

reduction, characterized by its succinct concept: to 

reduce the dataset’s dimensionality while retaining 

maximal variability (i.e. statistical information). 

Linear discriminant analysis (LDA)29,45 is a 

supervised dimensionality reduction technique, in 

contrast to PCA which is unsupervised, as it 

considers the category output for each sample in its 

data set. The fundamental concept of LDA can be 

succinctly summarized as ”minimizing intra-class 

variance and maximizing inter-class variance post-

projection”. Local linear embedding (LLE) 38,44 is 

also a very important dimension reduction method. 

Since LLE maintains local features of samples 

during dimensionality reduction, it is widely used 

in image recognition, high-dimensional data 

visualization and other fields. Compared with 

traditional PCA, LDA (or other similar 

dimensionality reduction methods) focuses on 

sample variance and LLE focuses on maintaining 

local linear features of samples during 

dimensionality reduction. Besides, independent 

component analysis (ICA)19,11 can reduce the 

dimensionality of samples with a non-Gaussian 

distribution. It is worth noting that the primary 

distinction between ICA and PCA lies in the fact 

that ICA aims to identify the direction of maximum 

independence, and in contrast, PCA seeks to 

identify the direction of maximum variance. These 

algorithms represent fundamentally different 

solution models, yet both are essentially linear 

processing methods. 

The aforementioned dimensionality reduction 

methods are considered to be clas- sic in the field. 

However, it has been widely acknowledged that 

image data inherently possess nonnegative 

attributes. Therefore, it is natural to impose a 

constraint ensuring that the data obtained through 

dimensionality reduction remains nonnegative. In 

1994, the method of Non-negative Matrix 

Factorization (NMF) was introduced by 36 although 

it was not yet referred to as NMF at that time. This 

approach involved utilizing non-negative linear 

combina- tions of variables to represent factors, 

ensuring the physical significance of the data 

being factorized. The weighted least squares 

algorithm was employed for model opti- mization 

in 36. However, due to computational complexity, 

this form of NMF did not gain widespread 

adoption. It was not until 1999 that the concept of 

NMF was first introduced by 25 in Nature and 

applied to face image representation. Then, the 

principles of NMF have received attention in 

various fields. 

Although the NMF algorithm has the natural 

characteristics of sparse repre- sentation, its 

sparsity is still not enough. Based on the NMF 

model, Hoyer et al. proposed Non-negative Sparse 

Coding (NSC) 17 and non-negative matrix 

factorization with sparse constraints Method 

(NMFSC) 17  making the results of NMF algorithm 

further sparse, and then improving the recognition 

rate of the algorithm. From then on, the research on 

sparse NMF algorithm has become more and more 

popular 34,13,30,31 Note that NMF is essentially an 

unsuper- vised method and cannot exploit label 

information. The authors in 28 proposed a new 

semi-supervised matrix factorization method, 

namely constrained nonnegative matrix 

factorization (CNMF). This method introduced 

label informa- tion as an additional constraint, 

which could be applied to a wide range of practical 

problems. Many studies have found that high-

dimensional data is usually located in the 

nonlinear low-dimensional manifold space. 

Aiming at the advantages of manifold learning, 

many NMF methods based on manifold learning 

have been proposed, such as Graph regularized 

nonnegative matrix factorization (GNMF) 6 neigh- 

borhood preserving orthogonal projection 

nonnegative matrix factorization 28  robust graph 

reconstruction-based nonnegative matrix 

factorization 18, and sparse dual graph-regularized 

deep nonnegative matrix factorization 17 . There are 

still many research results based on GNMF, please 

refer to 26,27,46 for details. 

Thus, we can summarize the following three 

advantages of NMF for use in this paper: (1) NMF 

is adept at processing large-scale data in matrix 

form, yielding decomposition results with clear 

physical significance; (2) The implementation of 

the NMF algorithm is straightforward and 

resource-efficient; (3) By integrating concepts such 

as graph theory, orthogonality, and sparsity, the  
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integrating a graph regularization term with 

sparsity constraint, the geometric structure of both 

data and feature manifolds is preserved, ensuring 

sparsity of the factor matrix and yielding 

improved local features for significantly enhanced 

clustering performance. 

(3) By adding sparsity constraints to the

coefficient matrix or basis matrix, we propose two

variations of the semi-GNMFSC model, namely

Semi-GNMFSCU and Semi-GNMFSCV, and

evaluate their clustering performance through

experimental results. Our findings indicate that

adding sparsity constraint to the basis matrix

yields optimal clustering performance and

robustness for the model, thus providing valuable

insights for future research in this area.

The rest of this paper is structured as follows.

Section 2 briefly reviews the basic algorithms of

NMF and describes variant theories of the NMF

algorithms used in this paper. Section 3 provides a

detailed introduction to two important new

models of Semi-GNMFSC and their corresponding

update rules. More importantly, the con- vergence

proofs of two new algorithms’ update rules are

also given. Building on the preparatory work of the

previous three sections, Section 4 presents many

convincing numerical experiments. Finally,

Section 5 makes a brief summary and outlook of

this paper.

Auxiliary Work 

In this section, firstly, we provide definitions or 

explanations of some commonly used symbols, 

and secondly, we also provide a brief review of 

NMF, Semi-NMF, and GNMF. Given n images and 

vectorized representation of each image, these 

images can be represented by a matrix Y = [y1, y2, 

. . . , yN] ∈ 𝘙+
𝘔×𝘕, and each column of Y

represents a sample vector. Here and in all 

subsequent representations, RM×N represents the 

set of all matrices of M × N whose elements are 

real, and 𝘙+
𝘔×𝘕 represents the set of all matrices of

M × N whose elements are real and non-negative. 

Let U = (𝑢1, . . . , 𝑢𝑘 ) ∈ 𝘙+
M ×K and V = (𝑣1, . . . , 𝑣𝑘  ) 

∈ 𝘙+
N ×K denote the basis matrix and coefficient 

matrix obtained by factorization of matrix Y , 

respectively. 

applicability and accuracy of NMF can be 

effectively enhanced, particularly in addressing 

clustering challenges posed by noisy images. 

However, due to NMF making the raw data, basis 

matrix, and coefficient matrix all non-negative, this 

to some extent limits its performance. So, the Semi-

NMF model was proposed in 10. The idea of Semi-

NMF allows the (part of) factorization of the 

original data matrix to be negative (such as 

allowing the basis matrix to be negative or the 

coefficient matrix to be nonnegative), and expands 

the application scope of the NMF method. 

Moreover, most of the NMF- based algorithms are 

sensitive to noisy data 7,10, 18,37  so selecting the best 

denoising method in noisy image clustering based 

on NMF models is necessary. A natural question is 

whether Semi-NMF can bring different results in 

noise processing? 

Driven by the above ideas, this paper combines 

them to study “clustering research on graph 

regularized semi-nonnegative matrix factorization 

under sparse constraints” for regular or noisy 

image data. It is worth noting that, in this study, 

the concept of “part constitutes a whole” of NMF 

is visually demonstrated. For example, when 

considering a face image, it can be vectorized to 

form a nonnegative matrix and then undergo 

matrix factorization using NMF. Interestingly, the 

resulting base image does not display a complete 

head image but instead focuses on specific parts of 

the face such as eyes, mouth, eyebrows, etc. 

Additionally, we will conduct simulations on the 

image data incorporating various types of noise 

and implementing diverse denoising techniques. 

The objective is to determine the most effective 

denoising method for different types of noise 

through experimental analysis, thereby offering 

valuable insights for future denoising 

preprocessing procedures. 

The main contributions of this paper are as follows: 

(1) We propose a novel model, Semi-GNMFSC,

based on NMF, which is par- ticularly well-suited

for sampling data in low-dimensional manifolds

embedded in high-dimensional spaces and for

clustering image data with redundant information.

(2) Firstly, the Semi-GNMFSC model relaxes the

nonnegative constraint on the basis matrix, thereby

enhancing the algorithm’s applicability. Secondly,
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The symbol ∥ · ∥1 is the representation of the norm 

of l1, which is the sum of the absolute values of 

each element in the target matrix. Specifically, the 

norm of l1 of the matrix A ∈ RM ×N is defined as: 

∥A∥1 =∑ ∑ |aij  |
N
j=1

M
i=1 , 

the symbol ∥ · ∥F is the representation of the 

Frobenius norm, which can be viewed as a 

generalization of the l2 norm of vectors, that is, the 

square root of all elements: 

∥A∥F = √𝑇𝑟(𝐴𝐴𝑇) = √∑ 𝑎𝑖𝑗
2

𝑖,𝑗 , 

Tr (·) is the symbolic representation of the trace of 

a matrix, and the trace of a square matrix A ∈ 

R𝑛×𝑛  is defined as the sum of diagonal elements, 

i.e.,  

Tr(A) = ∑ 𝑎𝑖𝑖 =  𝑎11 +  𝑎22 + ⋯+  𝑎𝑛𝑛
𝑛
𝑖=1 . 

This paper uses the following properties of Tr: (1) 

Tr (A + B) = Tr(A) + Tr(B); (2) Tr(rA) = r Tr(A), 

where r is a scalar; (3) Tr (AB) = Tr (BA), where A 

and B have appropriate expressions; (4) Tr (AT) = 

Tr(A). 

The symbol W is a symbolic representation of the 

weight matrix, and Wij is used to measure the 

proximity of two points yi and yj. proposed three 

definition methods: (1) 0-1 Weighting, (2) Heat 

Kernel Weighting, (3) Dot-Product Weighting 7. 

For simplicity, 0-1 Weighting is used to define the 

weight matrix W in this paper. The symbol D is the 

symbolic representation of the diagonal matrix 

whose entries are the sum of column elements in 

symmetric matrix W. That is, Djj = ∑l Wjl, written in 

matrix form:  

D = 

(

𝐷11
𝐷22

⋱
𝐷𝑁𝑁 )

 . 

The symbol L is the symbolic representation of the 

graph Laplacian matrix with L =D −W , which is the 

degree matrix minus the adjacency matrix. λ is the 

regularization parameter that controls the 

smoothness of the new representation. α is the 

parameter used to control the effect of sparse 

constraints. I is an all-1 matrix. 

 NMF 

The objective of the NMF algorithm is to identify 

two nonnegative matrices, U and V , such that their 

product closely approximates the original matrix Y, 

i.e., Y ≈ U V T . The objective function of NMF can be 

expressed as follows: 

𝑚𝑖𝑛
𝑈,𝑉

 ∥Y- UVT∥2
𝐹
 .             (1) 

s.t. U ≥ 0, V ≥ 0

The decomposition can be interpreted as follows: 

the column vectors of the original data matrix Y are 

expressed as weighted combinations of all the 

column vectors in the factor matrix U=[ 𝑢ik]∈ 𝘙+M×K

with the weighting coefficients being the elements  

of the corresponding column vectors in factor 

matrix VT=[ 𝑣kj]∈ 𝘙+𝐾×𝑁 . Therefore, U is referred to as

a basis matrix, and V is referred to as a coefficient 

matrix. When K < N , utilizing the coefficient matrix 

instead of the original matrix can effectively achieve 

dimensionality reduction and compression of large-

scale raw data. This approach not only minimizes 

storage space but also reduces computational costs, 

making it a valuable technique for handling high-

dimensional datasets. To solve (1), the update rule 

proposed by 25 is shown below: 

{

𝑢ik ← 𝑢ik
(YV)ik

(UVTV)
ik

,

𝑣jk ← 𝑣jk  
(YTU)jk

(VUTU)
jk

.

Semi-NMF 

It is well-established that the data Y , U , and V in 

NMF must adhere to non-negativity. However, 

various practical applications, such as sensor 

generated data, do not necessarily conform to this 

constraint. Semi-NMF extends the applicability of 

NMF by relaxing the nonnegative constraints on the 

data. Unlike the classic NMF, Semi-NMF only 

imposes nonnegative constraints on the original 

coefficient matrix V, potentially extending the 

applicability of Semi-NMF to a wider range of 

problems (see 10) for details). Simultaneously, the 

effectiveness of the concept of “semi-nonnegative”  
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has been demonstrated through experiments by 38.

As a result, the objective function based on Semi-

NMF now takes the following form: 

𝑚𝑖𝑛
𝑈,𝑉
∥Y-UVT∥2

𝐹
 .  (2) 

s.t. V ⩾ 0 

To solve (2), the update rule proposed by 11 is 

shown below: 

{

 𝑈 ←  𝑌 𝑉 (𝑉𝑇 𝑉 ) −  1,

𝑣𝑗𝑘 ←  𝑣𝑗𝑘 √
(𝑌𝑇𝑈)𝑗𝑘

+ + [𝑉(𝑈𝑇𝑈)− ]𝑗𝑘

(𝑌𝑇𝑈)𝑗𝑘
− + [𝑉(𝑈𝑇𝑈)+ ]𝑗𝑘

 .

Throughout this paper, the symbols 𝐴𝑗𝑘
+  𝑎𝑛𝑑  𝐴𝑗𝑘

−  in 

a matrix A = [Ai,j ] are presented in the following 

way: 

{
𝐴𝑗𝑘
+  =  (|𝐴𝑗𝑘 |  + 𝐴𝑗𝑘)/2,

𝐴𝑗𝑘
− =  (|𝐴𝑗𝑘 |  − 𝐴𝑗𝑘 )/2,

in which case 𝐴+=[ 𝐴𝑗𝑘
+ ] , 𝐴−  = [𝐴𝑗𝑘 

− ],and 𝐴𝑗𝑘= 𝐴𝑗𝑘
+ -𝐴𝑗𝑘

− . 

It is under the guidance of this positive result of 

Semi-NMF that we will incorporate the idea of 

“semi-nonnegative” into our data processing. 

GNMF 

The authors in 7 have incorporated spectral graph 

theory 7,1,40 and manifold learning theory 3,2,4 into the 

NMF algorithm, resulting in the proposal of the 

GNMF algorithm. GNMF is required to maintain the 

geometric. structure of the samples in the low-

dimensional space while performing matrix 

factorization. Assume that the two data points yi  and 

yj are adjacent points in the original space, then 

under low-dimensional space, the corresponding zi 

and zj are  also neighboring points (let za = [va1, . . . , 

vak]T   be the low-dimensional representation of ya). In 

general, we use Euclidean distance to measure the 

“dissimilarity” between the low-dimensional 

representation of two data points with zi and zj , i.e., 
d (zi, zj ) = ∥zi − zj ∥2. It is easy to see that the difference 

between zi and zj also depends on the W matrix in 

the beginning of this section. With the help of weight  
matrix W , one can use the following formula to 

measure the smoothness of the low-dimensional 

representation: 

R1 = 
1

2
∑ ∥ 𝑧𝑖 − 𝑧𝑗 ∥

2𝑁
𝑖,𝑗=1 𝑊𝑖𝑗 = ∑ 𝑍𝑖

𝑇𝑁
𝑖=1 𝑍𝑖𝐷𝑖𝑖 −

∑ 𝑍𝑖
𝑇𝑁

𝑖,𝑗=1 𝑍𝑗𝑊𝑖𝑗

= Tr (V T DV ) − Tr (V T W V ) = Tr (V T LV ) . 

By minimizing R1, if the similarity between data 

points yi and yj is high, their corresponding low 

dimensional space values zi and zj are also the 

same. This geometry-based regularization 

function is integrated with the original NMF 

objective function to obtain GNMF, which is 

defined by the following objective function: 

𝑚𝑖𝑛
𝑈, 𝑉

∥ 𝑌 − 𝑈𝑉𝑇 ∥𝐹
2+λTr(VTLV).          (3) 

s.t. U ≥ 0, V ≥ 0

To solve Eq.(3), the update rules proposed by 6 is 

shown below: 

{

 𝑢ik ←    𝑢ik
(𝑌𝑉)𝑖𝑘

 (𝑈 𝑉 𝑇  𝑉 )𝑖𝑘 ,

 𝑣jk ←  𝑣jk
( 𝑌𝑇  𝑈 + 𝜆𝑊 𝑉 )𝑗𝑘

(𝑉 𝑈𝑇  𝑈 + 𝜆𝐷𝑉 )𝑗𝑘  .

Semi-GNMFSC 

In this section, based on the auxiliary work in the 

previous section, integrating semi non-negative, 

graph regularization, and sparse constraints 

together, a novel NMF based method called Semi-

GNMFSC model will be presented. We will first 

provide a detailed introduction to the specific form 

of our improved model, followed by cor-

responding multiplication update rules, and 

finally provide the convergence theorem and its 

proof. 

Objective function 

Due to the strong performance of GNMF and 

Semi-NMF, we have integrated these two 

approaches. Initially, we introduce the concept of 

Semi-NMF into the original NMF framework. This 

relaxation of nonnegative constraints on the 

original matrix and basis matrix expands the 

applicability of NMF to a wider range of scenarios. 

For instance, in this study, although the image 

dataset is non-negative, negative values are 

introduced during the denoising process of noisy 
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   data using wavelet transform. This results in the 

original matrix not satisfying the constraint of 

NMF, making NMF meaningless under 

interpretability. However, we are only committed 

to reducing dimensionality through the concept of 

NMF. As for whether the factorized basis matrix is 

non-negative, it is not important compared to the 

non-negative coefficient matrix that we need more. 

In such cases, Semi-NMF can address these issues. 

Additionally, in order to effectively handle data 

sampled from a submanifold embedded in a high-

dimensional ambient space, we incorporate the 

intrinsic geometric structure of data distribution 

into the objective function as an additional 

regularization term based on Semi-NMF. Then the 

following formula is obtained: 

𝑚𝑖𝑛
𝑈,𝑉

∥ 𝑌 − 𝑈𝑉𝑇 ∥𝐹
2+λTr(VTLV).      (4) 

 s.t. V ≥ 0 

Note that in 16 they combined the NMF algorithm 

with sparse coding to establish Non-Negative 

Sparse Coding (NNSC) and improved the 

corresponding application performance. So, after 

integrating the concepts of GNMF, Semi-NMF 

algorithms, and the sparsity of matrices ignored in 

previous research, we will introduce the concept of 

sparsity into model (4) to strengthen sparsity 

constraints on the basis matrix U or coefficient 

matrix V , in order to obtain a decomposed matrix 

U or V that is sparse and achieve better clustering 

performance. So, we will obtain the following 

two new models. 

(1) Apply sparse constraints to the coefficient

matrix V .

J Semi−GNMFSCV =
𝑚𝑖𝑛
𝑈, 𝑉

∥ 𝑌 − 𝑈𝑉𝑇 ∥𝐹
2+λTr(VTLV) +                         

α∥V ∥1 .           (5) 

  s.t. V ≥ 0 

(2) Apply sparse constraints to the basic matrix U.

J Semi−GNMSCU =
𝑚𝑖𝑛
𝑈, 𝑉

∥ 𝑌 − 𝑈𝑉𝑇 ∥𝐹
2+λTr(VTLV) + 

α∥U ∥1 .         (6) 
 s.t. V ≥ 0 

The above two new models are collectively referred 

to as Semi-GNMFSC model. 

Update Rules  

In this subsection, we will present the solution to 

model (5) and model (6). As we have seen, (5) and 

(6) are not jointly convex for U and V , so we cannot

have a closed- form solution. The above

minimization problem can be solved by using the

iterative algorithm updated alternately by U and V.

Efficient algorithm for solving model (5) 

The model (5) can be re-expressed in the following 

sense: 

J Semi−GNMFSCV =Tr((Y−U V T)(Y−U V T )T )+ 

λTr(V T LV)+α∥V∥1

= Tr (Y Y T) - 2Tr(Y T U V T) + Tr (U V T V U T)       (7) 

+ λ Tr (V T LV) + α∥ V ∥ 1,

and the optimization of U is equivalent to 

optimization of the following functions:  

1  = −2 Tr (Y T U V T ) + Tr (V U TU V T ) . 

Since the matrix U does not have any restriction, it 

is straightforward to take the partial derivative of 

1 concerning U and set it to zero, i.e., 
 𝜕 1 

  𝜕𝑈  
 = −2Y V + 2U V T V = 0, 

and then the following update rule of U is arrived: 

U ← Y V (V T V )−1.         (8) 

Therefore, the update rule and convergence proof of 

U in this paper is consistent with that in Semi-NMF 
11 The difference is the update rule and convergence 

proof of coefficient matrix V . 

Next, we give the updating rule for V . The 

optimization of V is equivalent to the optimization 

of the following functions: 

2  = −2 Tr(Y T U V T)+ Tr (U V T V U T)+ λ Tr (V T LV) + α∥ V ∥ 1. 

Let ϕjk be the Lagrangian multiplier that constrains 

V ≥ 0 and Φ = [ϕjk], so that one can obtain the 

following Lagrangian function: 

L 1= −2 Tr(YTUVT) + Tr(UVTVUT) + λTr(VTLV)+α∥ V ∥1−Tr (ΦVT) . 

The first partial derivatives of L1 with respect to V 

will lead to 

𝜕𝐿1

𝜕𝑉
 = −2YT U + 2V U T U + 2λLV + αI1−μ, 
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and with the help of KKT condition 43  ϕjk vjk = 0, 

(−2Y T U + 2V U T U + 2λLV + αI1)jkVjk = 0       (9) 

follows. According to this method, it can be 

derived that: 

{
[𝑌𝑇𝑈]𝑗𝑘 = (𝑌𝑇𝑈𝑗𝑘

+ − (𝑈𝑇𝑈)𝑗𝑘 
− ,

[𝑉𝑈𝑌𝑈]𝑗𝑘 = [𝑉(𝑈𝑇𝑈)]𝑗𝑘
+  − [𝑉(𝑈𝑇𝑈)]𝑗𝑘 

− .

We can obtain the following update rule: 

vjk ← vjk√
2(𝑌𝑇𝑈)𝑗𝑘

+ +2[𝑉(𝑈𝑇𝑈)]𝑗𝑘
− +2𝜆(𝑊𝑉)𝑗𝑘

2(𝑌𝑇𝑈𝑗𝑘
+ +2[𝑉(𝑈𝑇𝑈)]𝑗𝑘

+ +2𝜆(𝐷𝑉)𝑗𝑘+𝛼
 .(10) 

Therefore, (10) reduces to 

(−2Y T U + 2V U T U + 2λLV + αI1) jk Vjk
2  = 0,       (11) 

and (11) is identical to (9). In fact, both of (11) and 

(9) require that at least one of the two factors is

equal to zero. The first factors in both equations

are the same, and for the second factors Vjk and

𝑉𝑗𝑘
2  𝑖𝑓 𝑉𝑗𝑘 =  0, 𝑡ℎ𝑒𝑛  𝑉𝑗𝑘

2  = 0, and vice versa. Thus,

if (11) holds, (9) also holds and vice versa. So, it is

true that (11) is identical to (9). Theorem 1. The

objective function JSemi−GNMFSCV in Eq.(5) is

nonincreasing under the updating rules in Eq.(8)

and Eq.(10).The Euclidean distance is invariant

under these updates if and only if U and V are at

a stationary point of the distance.

Theorem 1 guarantees the convergence of the

iterations in Eq.(8) and Eq.(10), so the final

solution will be a local optimum. Our proof

basically follows the idea of Semi-NMF in Ding

et al (2008) and will be given in section 3.4.

Efficient algorithm for solving model (6) 

The model (6) can be re-expressed in the 

following sense: 

JSemi−GNMFSCU = Tr[(Y−UVT) (Y−UVT)T ]+λ Tr(VT 

LV) +α∥ U ∥ 1 = Tr (YYT) − 2Tr(Y T U V T) + Tr (U V

T VUT) + λ Tr (VTLV) + α∥ U ∥  1.             (12)

Note that the matrix properties Tr(X) = T r(XT ), T 

r(XY ) = T r(Y X) for suitable    X and Y . Let ψ and 

ϕ be the Lagrange multipliers satisfying Φ = [ϕjk], 

then the Lagrange function L2 of (12) is as 

follows: 

L2 = J Semi−GNMFSCU − Tr (ΨUT ) − Tr (ΦVT). (13) 

Taking the partial derivative of the above function 

L2 with respect to U and V will yield the following

two expressions. 

𝜕𝐿2

𝜕𝑈 
 = −2Y V + 2U V T V + α I1 − Ψ,  (14) 

𝜕𝐿2

𝜕𝑉 
 = −2YT U + 2V U T U + 2λLV – Φ.  (15) 

Similarly, UVT V in (14) can be represented as: 

[𝑈𝑉𝑇𝑉]𝑖𝑘 = [𝑈(𝑉𝑇𝑉)]𝑖𝑘
+  − [𝑈(𝑉𝑇𝑉)]𝑖𝑘

−  , 

as well as VUTU in (15) can be represented as: 

[𝑉𝑈𝑇𝑈]𝑖𝑘 = [𝑉𝑈
𝑇𝑈]𝑖𝑘

+  −  [𝑉𝑈𝑇𝑈]𝑖𝑘
−  ,

by using the KKT condition ψ ik U ik = 0 and ϕjkVjk = 

0, we can obtain the following update rules: 

uik ← uik√
2[𝑌𝑉]𝑖𝑘+2[𝑈(𝑉

𝑇𝑉)]𝑖𝑘
−

2[𝑈(𝑉𝑇𝑉)]𝑖𝑘
+ +𝛼

,           (16) 

vjk ← vjk√
(𝑌𝑇𝑈)𝑗𝑘 

+ +[𝑉(𝑈𝑇𝑈)]𝑗𝑘 
− +𝜆(𝑊 𝑉)𝑗𝑘

(𝑌𝑇𝑈)𝑗𝑘 
− +[𝑉(𝑈𝑇𝑈)]𝑗𝑘 

+ +𝜆(𝐷𝑉)𝑗𝑘
 .    (17) 

Theorem 2. The objective function J Semi−GNMF 

SCU in Eq.(6) is nonincreasing under the updating 

rules in Eq.(16) and Eq.(17).The Euclidean 

distance is invariant under these updates if and 

only if U and V are at a stationary point of the 

distance. 

Theorem 2 guarantees the convergence of the 

iterations in Eq.(16) and Eq.(17), and the proof will 

be given in section 3.4. 

Analysis of complexity 

After deducing the multiplication update rules of 

JSemi−GNMFSCV and JSemi−GNMFSCU , we will 

form the following program process.  For 

simplicity, we on or JSemi−GNMFSCV , while the 

program process for JSemi−GNMFSCU is similar. 
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Algorithm 1 Semi-GNMFSCV algorithm description 

Input: Initial data matrix X = [x1, . . . , xN] ∈  𝑹±
𝑴×𝑵 , Graph regularization parameter λ,

Sparsity parameter α 
Output: Locally optimal solution matrix U, Corresponding coefficient matrix V 

1: Initialization: The initial matrix is randomly selected U ∈  𝑹±
𝑴×𝑲,V+ ∈ RN×K

;

2: The initial graph matrix W is constructed from k nearest neighbours, D=Djj, L=D− W; 

3: Fix U and update V according to the formula (8); 

4: Fix V and update U according to the formula (10); 

5: If it is less than the threshold or exceeds the given number 

of iterations, the algorithm terminates. Otherwise, 3; 

Meanwhile through Algorithm 1, we will have the 

computational complexity of the proposed 

algorithm. The steps that affect the complexity of 

Algorithm 1 mainly consist of step 2, step 3, and 

step 4. Step 2 is the computation of weight matrix 

for constructing the data graph, and its complexity 

is O (N 2M ), in step 3, the complexity of calculating 

U with one iteration is O (M N K + N K2), and in step 

4, the complexity of calculating V with one iteration 

is O (M N K + N K2 + KM 2). In summary, the 

complexity of Semi-GNMFSCV algorithm is O [t(M 

N K + N 2M + N K2 + KM 2)]. Algorithm of Semi-

GNMFSCU has the same complexity. 

Convergence proof of Semi-GNMFSC 

In this subsection, we will prove the convergence of 

(5) and (6). We first introduce the following

definition.

Definition 1. 24 Z(H, H′) is an auxiliary function for

J(H) if the conditions

Z (H, H′) ≥ J(H), Z(H, H) = J(H), 

are satisfied. 

The auxiliary function is very useful because of the 

following lemma. Lemma 1. If Z (H, H(t)) is an 

auxiliary function , then J(H) is nonincreasing under 

the update 

𝐻(𝑡+1) =  𝑎𝑟𝑔 𝑚𝑖𝑛𝑍 (𝐻, 𝐻(𝑡))
 𝐻

 .         (18)

Proof. J (H(t+1)) ≤ Z (H(t+1), H(t)) ≤ Z (H(t), H(t)) = J (H(t)) 

Note that J (H(t+1)) = J (H(t)) only if H(t) is a local 

minimum of Z (H, H(t)). If the derivatives of J exist  

and are continuous in a small neighborhood of  H(t)

this also implies that the derivatives ∇ J (H(t)) = 0. 

Thus, by iterating the update in (18) we obtain a 

sequence of estimates that converge to a local 

minimum Hmin = arg minH J(H) of the objective 

function: 

J(Hmin) ≤. . .J (Ht+1)≤ J (Ht). . . ≤ J (H2) ≤ J(H1)≤ J(H0). 

According to Lemma 2 (see below), Z (H, H′) 

defined in (22) is an auxiliary function of J and its 

minimum is given by (23). Accordingto (18), H(t+1) ←  

H and H(t) ← H′. 

Lemma 2. For any matrices A ∈ 𝑅+
𝑛×𝑛  , 𝐵 ∈ 𝑅+

𝑘×𝑘 , 

𝑆 ∈ 𝑅+
𝑛×𝑘, 𝑆′  ∈ 𝑅+

𝑛×𝑘  , with A and B symmetric, the

following inequality holds: 

 ∑ ∑
(𝐴𝑆′𝐵)𝑖𝑝𝑆𝑖𝑝

2

𝑆′𝑖𝑝

𝐾
𝑝=1

𝑛
𝑖=1 ≥ 𝑇𝑟(𝑆

𝑇𝐴𝑆𝐵). (19) 

Proof. Let Sip = S′ip uip. Using an explicit index, 
the difference ∆ between the left-hand side 

and the right-hand side can be written as: 

∆ = ∑ ∑ 𝐴𝑖𝑗

𝑘

𝑝,𝑞=1

𝑛

𝑖,𝑗=1

𝑆′𝑗𝑞𝐵𝑞𝑝𝑆′𝑖𝑝  (𝑢𝑖𝑝
2 − 𝑢𝑖𝑝𝑢𝑗𝑞) ,

because A and B are symmetric, this is equal to: 

∆ = ∑ ∑ 𝐴𝑖𝑗

𝑘

𝑝,𝑞=1

𝑛

𝑖,𝑗=1

𝑆′𝑗𝑞𝐵𝑞𝑝𝑆′𝑖𝑝 (
𝑢𝑖𝑝+
2 𝑢𝑗𝑞

2

2
− 𝑢𝑖𝑝𝑢𝑗𝑞)

=  
1

2
∑ ∑ 𝐴𝑖𝑗

𝑘
𝑝 ,𝑞=1

𝑛
𝑖,𝑗=1 𝑆′𝑗𝑞𝐵𝑞𝑝𝑆′𝑖𝑝(𝑢𝑖𝑝−𝑢𝑗𝑞 )

2 ≥ =0. 
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When B = I and S is a column vector, (19) reduces to 

the result in 23.  

 

Convergence proof of Model (5) 

To prove Theorem 1, we need to show that (5) does  

not increase under the update step in (8) and (10). 

Since the regular and sparse terms in (5) as well as 

the non-negative constraint terms are only related 

to V , our updated formula for U in Semi-GNMFSCV  

is exactly the same as that in Semi-NMF. Therefore, 

we can use the convergence proof of Semi-NMF to 

show that (5) is not increased under the update step 

in (8). See 9  for details. Now, we just need to prove 

that (5) is not incremented under the update step in 

(10). Meanwhile, in order to facilitate comparison 

with the process in 9, we rewrite JSemi−GN M F 

SCV as follows: 

J(H) = Tr(−2HT B + HAHT +λHT DH − λHT W H) +  α 

∥ H∥ 1,                                      (20) 

where A = U T U , B = Y T U , and H = V . Finally, J(H) 

can be written as follows: 

J(H) = Tr(−2[HT B]+ + 2[HT B]− + [HA]+HT− [HA]−HT + 

λHT DH− λHT W H) + α∥H∥ 1.                  (21) 

Lemma 3. Given the objective function J(H)defined 

in (21) with all matrices are nonnegative. Then the 

following function 

Z(H,H′)= -∑ 2𝐵𝑖𝑘
+𝐻′𝑖𝑘𝑖𝑘 (1 + 𝐿𝑜𝑔

𝐻𝑖𝑘

𝐻′𝑖𝑘
)+∑ 𝐵𝑖𝑘

−
𝑖𝑘

𝐻𝑖𝑘
2 +𝐻′𝑖𝑘

2

𝐻′𝑖𝑘
 

+∑
(𝐻′𝐴+)𝑖𝑘𝐻𝑖𝑘

2

𝐻′𝑖𝑘
𝑖𝑘 − ∑ 𝐴𝑘𝑙

− 𝐻′
𝑖𝑘𝐻

′
𝑖ℓ𝑖𝑘𝑙 (1 + 𝑙𝑜𝑔

𝐻𝑖𝑘𝐻𝑖ℓ

𝐻′ 𝑖𝑘𝐻𝑖ℓ
) + 

λ ∑
(𝐷𝐻′ )

𝑖𝑘
𝐻𝑖𝑘
2

𝐻′ 𝑖𝑘
𝑖𝑘 − 𝜆 ∑ 𝑊𝑙𝑖𝐻

′
𝑖𝑘𝐻

′
𝑙𝑘𝑖𝑘𝑙 (1 + 𝑙𝑜𝑔

𝐻𝑖𝑘𝐻𝑙𝑘

𝐻′𝑖𝑘𝐻
′
𝑙𝑘
) 

+𝛼∑
𝐻𝑖𝑘
2  +𝐻′𝑖𝑘

2

2𝐻′𝑖𝑘
𝑖𝑘  ,   (22) 

is an auxiliary function for J(H), that is, the auxiliary 

function Z(H,H′) satisfies Definition 1. 

Furthermore, it is a convex function in H and its 

global minimum is 

𝐻𝑖𝑘 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐻  𝑍(𝐻 , 𝐻
′) =

𝐻′𝑖𝑘√
2𝐵𝑖𝑘

+ +2(𝐻′𝐴−)𝑖𝑘 +2𝜆 (𝑊 𝐻′)𝑖𝑘

2𝐵𝑖𝑘
−  +2(𝐻′𝐴+)𝑖𝑘 +2𝜆 (𝐷𝐻′)𝑖𝑘 +𝛼 

 .  (23) 

Proof. The function J(H) is composed of positive 

and negative terms. To establish the validity of the 

auxiliary, it is imperative to determine the upper  

bound for the positive term and the lower bound 

for the negative term. We firstly establish an 

upper bound for the positive term. J(H) consists 

of four positive terms, i.e., the second, third, fifth, 

and seventh terms in (22). The qualifications for 

the second and seventh items are proved by the 

following two formulas: 

𝑇𝑟(𝐻𝑇𝐵− ) = ∑ 𝐻𝑖𝑘𝐵𝑖𝑘
−

𝑖𝑘 ≤ ∑ 𝐵𝑖𝑘
−  

𝐻𝑖𝑘
2 + 𝐻′𝑖𝑘

2

2𝐻𝑖𝑘
′𝑖𝑘  ,  (24) 

||𝐻||1=∑ 𝐻𝑖𝑘𝑖𝑘  ≤ ∑
𝐻𝑖𝑘
2  +𝐻𝑖𝑘

′2

2𝐻𝑖𝑘
′𝑖𝑘  .   (25) 

The above two formulas use the inequality a ≤ (a2 

+ b2) /2b for any a > 0, b > 0.

For the third and fifth terms in J(H) (the third

item: A = I and B = A+, the fifth item: B = I and A =

D), by using Lemma 2, we obtain the upper

bounds estimation:

𝑇𝑟(𝐻𝐴+𝐻𝑇 ) ≤ ∑
(𝐻′𝐴+)𝑖𝑘𝐻𝑖𝑘

2

𝐻′𝑖𝑘
𝑖𝑘  ,  (26) 

𝑇𝑟(𝐻𝑇𝐷𝐻 ) ≤ ∑
(𝐷𝐻′ )𝑖𝑘 𝐻𝑖𝑘

2

𝐻′𝑖𝑘
𝑖𝑘  ,   (27) 

Until now, J(H) remains three negative terms’ 

lower bounds to estimate, which are the first, 

fourth and sixth terms. We will get the lower 

bounds by using the inequality z ≥ 1 + log z (for 

any z > 0). Then, 

𝐻𝑖𝑘

𝐻′𝑖𝑘
 ≥  1 + 𝑙𝑜𝑔 

𝐻𝑖𝑘

𝐻′𝑖𝑘
 ,  (28) 

And 
𝐻𝑖𝑘𝐻𝑖ℓ

𝐻′𝑖𝑘𝐻′𝑖ℓ
 ≥  1 + 𝑙𝑜𝑔 

𝐻𝑖𝑘𝐻𝑖ℓ

𝐻′𝑖𝑘𝐻′𝑖ℓ
 ,   (29) 

Via (28), the first term in J(H) is estimated in the 

following way: 

𝑇𝑟(𝐻𝑇𝐵+ ) =∑𝐵𝑖𝑘
+𝐻𝑖𝑘

𝑖𝑘

≥  

 ∑ 𝐵𝑖𝑘
+𝐻𝑖𝑘

′ (1 =   𝑙𝑜𝑔
𝐻𝑖𝑘

𝐻𝑖𝑘
′
)𝑖𝑘  .   (30) 

Via (29), the fourth and sixth terms in J(H) are 

estimated by 

𝑇𝑟(𝐻𝐴−𝐻𝑇) ≥ ∑ 𝐴𝑘ℓ
− 𝐻′𝑖𝑘𝐻

′
𝑖ℓ 𝑖𝑘ℓ

(1 + 𝑙𝑜𝑔
𝐻𝑖𝑘𝐻𝑖ℓ

𝐻′𝑖𝑘𝐻′𝑖ℓ
) ,  (31)
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Putting (24), (25), (26), (27), (30), (31), (32) together,  

we get an auxiliary function Z (H, H′) such that J(H) 

≤ Z (H, H′) and J(H) = Z(H, H). 

To find the minimum of Z (H, H′), we take  
𝜕𝑍(𝐻,𝐻′)

𝜕𝐻𝑖𝑘
 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠: 

𝜕𝑍(𝐻,𝐻′)

𝜕𝐻𝑖𝑘
 = -2𝐵𝑖𝑘

+ 𝐻′𝑖𝑘
𝐻𝑖𝑘

+ 2𝐵𝑖𝑘
− +

𝐻′𝑖𝑘
𝐻𝑖𝑘

 
2(𝐻′𝐴+)𝑖𝑘𝐻𝑖𝑘

𝐻𝑖𝑘
−2

(𝐻′𝐴−)𝑖𝑘𝐻′𝑖𝑘
𝐻𝑖𝑘

 

+ 2λ 
(𝐷𝐻′)𝑖𝑘𝐻𝑖𝑘

𝐻′𝑖𝑘
 -2λ 

(𝑊𝐻′)𝑖𝑘𝐻′𝑖𝑘
𝐻𝑖𝑘

+𝛼
𝐻𝑖𝑘
𝐻𝑖𝑘
′ . (33) 

Let J1 =∑ 𝐴𝑘ℓ
− 𝐻𝑖𝑘

′ 𝐻𝑖ℓ
′

𝑖𝑘ℓ (1 + 𝑙𝑜𝑔
𝐻𝑖𝑘𝐻𝑖ℓ

𝐻𝑖𝑘
′ 𝐻𝑖ℓ

′ ) =

∑ 𝐴𝑠ℓ
− 𝐻𝑡𝑠

′ 𝐻𝑡ℓ
′

𝑡𝑠ℓ (1 + 𝑙𝑜𝑔
𝐻𝑡𝑠𝐻𝑡ℓ

𝐻𝑡𝑠
′ 𝐻𝑡ℓ

′ ) , then 

𝜕𝐽1

𝜕𝐻𝑖𝑘
=[∑ 𝐴𝑘𝑘

− 𝐻𝑖𝑘
′ 𝐻𝑖ℓ

′
ℓ (1 + 𝑙𝑜𝑔

𝐻𝑖𝑘𝐻𝑘ℓ

𝐻𝑖𝑘
′ 𝐻𝑖ℓ

′ )]
′
𝐻𝑖𝑘

+

[∑ 𝐴𝑠𝑘
−

𝑠 𝐻𝑖𝑠
′ 𝐻𝑖𝑘

′ (1 + 𝑙𝑜𝑔
𝐻𝑖𝑠𝐻𝑖𝑘

𝐻𝑖𝑠
′ 𝐻𝑖𝑘

′ )] ′𝑖𝑘  

- [𝐴𝑘𝑘
−  𝐻𝑖𝑘

′ 𝐻𝑖𝑘
′ (1 + 𝑙𝑜𝑔

𝐻𝑖𝑘𝐻𝑖𝑘

𝐻𝑖𝑘𝐻𝑖𝑘
)]

′
𝐻𝑖𝑘

= 𝐴𝑘ℓ
−  𝐻𝑖𝑘

′ 𝐻𝑖ℓ
′ 1

𝐻𝑖𝑘
+ 𝐴𝑠𝑘

−  𝐻𝑖𝑠
′ 𝐻𝑖𝑘

′ 1

𝐻𝑖𝑘
 = 

2 (𝐻′𝐴−)𝑖𝑘𝐻𝑖𝑘
′

𝐻𝑖𝑘
 . 

Let  J2 = ∑ 𝑊ℓ𝑖𝐻𝑖𝑘
′ 𝐻𝑖𝑘

′
𝑖𝑘ℓ (1 + 𝑙𝑜𝑔

𝐻𝑖𝑘𝐻ℓ𝑘

𝐻𝑖𝑘
′ 𝐻𝑖𝑘

′ ) =

∑ 𝑊ℓ𝑡
−𝐻𝑡𝑠

′ 𝐻ℓ𝑠
′

𝑡𝑠ℓ  (1 + 𝑙𝑜𝑔
𝐻𝑡𝑠𝐻ℓ𝑠

𝐻𝑡𝑠
′ 𝐻ℓ𝑠

′ ) , 

Then 

𝜕𝐽1

𝜕𝐻𝑖𝑘
=[∑ 𝑊ℓ𝑖

−𝐻𝑖𝑘
′ 𝐻ℓ𝑘

′
ℓ (1 + 𝑙𝑜𝑔

𝐻𝑖𝑘𝐻ℓ𝑘

𝐻𝑖𝑘
′ 𝐻ℓ𝑘

′ )]
′
𝐻𝑖𝑘

+ 

[∑𝑊𝑖𝑡
−

𝑠

𝐻𝑡𝑘
′ 𝐻𝑖𝑘

′ (1 + 𝑙𝑜𝑔
𝐻𝑡𝑘𝐻𝑖𝑘

𝐻𝑡𝑘
′ 𝐻𝑖𝑘

′
)]

′
𝐻𝑖𝑘

- [𝑊𝑖𝑖
−  𝐻𝑖𝑘

′ 𝐻𝑖𝑘
′ (1 + 𝑙𝑜𝑔

𝐻𝑖𝑘𝐻𝑖𝑘

𝐻′𝑖𝑘𝐻′𝑖𝑘
)]

′
𝐻𝑖𝑘

= 𝑊ℓ𝑖
−  𝐻𝑖𝑘

′ 𝐻ℓ𝑘
′ 1

𝐻𝑖𝑘
+ 𝑊𝑖𝑡

−  𝐻𝑡𝑘
′ 𝐻𝑖𝑘

′ 1

𝐻𝑖𝑘
 = 

2 (𝑊−𝐻′)𝑖𝑘𝐻𝑖𝑘
′

𝐻𝑖𝑘
 . 

The Hessian matrix obtained by the second 

derivatives is 
𝜕2𝑍 (𝐻, 𝐻′)

𝜕𝐻𝑖𝑘𝜕𝐻𝑗ℓ
 = 𝛿𝑖𝑗𝛿𝑘ℓ𝑌𝑖𝑘 

With 

𝑌𝑖𝑘 =
2[(𝐵+)𝑖𝑘 + (𝐻′𝐴

−)𝑖𝑘 + 𝜆(𝑊𝐻
′)
𝑖𝑘
]𝐻′𝑖𝑘

𝐻𝑖𝑘
2  + 

2𝐵𝑖𝑘
− + 2 (𝐻′𝐴+)𝑖𝑘 + 2𝜆(𝐷𝐻′)  𝑖𝑘 + 𝛼

𝐻′𝑖𝑘
 . 

Therefore, Z (H, H′) is a convex function of H. Thus, 

we obtain the global minimum of Z (H, H′) by 

∂Z (H, H′) /∂Hik = 0, 

in (33), and then (23) follows. 

We can now prove the convergence of Theorem 1 by 

Lemma 1 and Lemma 3. 

Proof of Theorem 1: Replacing Z (H, H(t)) in (18) by 

(22) results in the following update rule:

𝐻(𝑡+1) = 𝐻′𝑖𝑘√
2𝐵𝑖𝑘

+  +2 (𝐻′𝐴−)𝑖𝑘  +2𝜆 (𝑊 𝐻′)𝑖𝑘

2𝐵𝑖𝑘
−+ 2 (𝐻′𝐴+)𝑖𝑘 +2𝜆 (𝐷 𝐻

′)𝑖𝑘  + 𝛼
 . 

Since (22) is an auxiliary function, J is nonincreasing 

under this update rule according to Lemma 1. Let A 

= U T U , B = Y T F , and H = V , we have (10). 

Convergence proof of Model (6) 

To prove Theorem 2, we need to prove that (6) does 

not increase under the updating steps of (16) and 

(17). Since (6) contains only α∥ U∥1 but α∥ V∥1 is 

missing. The update rule of V in (6) is similar to that 

in (5), just removing α∑
𝐻𝑖𝑘
2 𝐻′𝑖𝑘

2

2𝐻′𝑖𝑘
𝑖𝑘 term in auxiliary 

function, and others are the same, so we omit the 

details here. Now, the remaining is to show the 

update rule for U in (16) is exactly the update rule in 

(18) with a proper auxiliary function by the

following Lemma.

Lemma 4. The function

Z (H, H′) 

=∑ 𝐻𝑖𝑘
−

𝑖𝑘

𝐵𝑖𝑘
2  +𝐵𝑖𝑘

′2

2𝐵𝑖𝑘
′ + ∑

𝐻𝑖𝑘
′ )+𝐴(𝐻𝑖𝑘

2 )+

(𝐻𝑖𝑘
′ )+𝑖𝑘 + 𝛼 ∑

𝐻𝑖𝑘
2  +𝐻𝑖𝑘

′2

2𝐻𝑖𝑘
′𝑖𝑘

∑2𝐻𝑖𝑘
+𝐵𝑖𝑘

′

𝑖𝑘

(1 + 𝑙𝑜𝑔
𝐵𝑖𝑘

𝐵𝑖𝑘
′
) −∑𝐴𝑘ℓ(𝐻𝑖𝑘

′ )−(𝐻𝑖ℓ
′ )−

𝑖𝑘ℓ

(1 + 𝑙𝑜𝑔
𝐻𝑖𝑘
−𝐻𝑖ℓ

−

(𝐻𝑖𝑘
′ )−(𝐻𝑖ℓ

′ )−
)   (34)

is an auxiliary function for the objective function of 

J(H) in (6): 

J (H) = Tr[−2[BTH]+  +2[BTH]−  +[HA(HT)]+

 −[HA(HT)]−] + α∥ H∥ 1    (35)  

with A = V T V , B = Y V , and H = U . 

Proof. 

𝑇𝑟  (𝐵
𝑇  𝐻−) = ∑ 𝐻𝑖𝑘

−  𝐵𝑖𝑘𝑖𝑘 ≤  ∑ 𝐻𝑖𝑘
−  

𝐵𝑖𝑘
2 𝐵𝑖𝑘

′2

2𝐵𝑖𝑘
′𝑖𝑘 , 

𝑇𝑟[𝐻
+𝐴(𝐻𝑇)+ ] ≤ ∑

(𝐻𝑖𝑘
′ )+(𝐴𝐻𝑖𝑘

2 )+

(𝐻𝑖𝑘
′ )+𝑖𝑘  , 

||𝐻||1 = ∑ 𝐻𝑖𝑘 ≤𝑖𝑘
∑

𝐻𝑖𝑘
2 𝐻′𝑖𝑘

2

2𝐻𝑖𝑘
′𝑖𝑘 . 
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The above are the positive terms in the auxiliary 

function, and then give the negative ones: 

𝑇𝑟  (𝐵
𝑇 𝐻+) = ∑𝐻𝑖𝑘

+  𝐵𝑖𝑘
𝑖𝑘

≥∑𝐻𝑖𝑘
+𝐵𝑖𝑘

′ (1 = 𝑙𝑜𝑔
𝐵𝑖𝑘

𝐵𝑖𝑘
′
)

𝑖𝑘

, 

𝑇𝑟[𝐻
−𝐴(𝐻𝑇)− ] ≥ ∑𝐴𝑘ℓ

𝑖𝑘ℓ

𝐻𝑖𝑘
′ )−(𝐻𝑖ℓ

′ )−

(1 + 𝑙𝑜𝑔
𝐻𝑖𝑘
− 𝐻𝑖ℓ

−

(𝐻𝑖𝑘
′ )−(𝐻𝑖ℓ

′ )−
).

From the above inequality we can get: Z (H, H′) ≥ 

J(H). That is, the auxiliary function is valid. 

The analysis of the rest of this section is the same as 

section 3.4.1. 

EXPERIMENTS AND RESULTS ANALYSIS 

This section will conduct experiments on image 

datasets with different noise levels based on the 

models and update algorithms outlined in Section 3 

to verify the effectiveness of denoising methods for 

clustering. 

Datasets 

Five commonly utilized datasets will be employed 

in the experimental analysis, and a comprehensive 

depiction of these datasets used in the clustering 

task is provided in Table 1. 

Table 1 : Statistics of the data sets 

Databases 
Samples 

(N) 

Features 

(M) 

Classes 

(C) 

ORL 400 1024 40 

COIL20 1440 1024 20 

Yale 165 1024 15 

PIE 2586 1024 68 

AR 2600 1024 100 

• COIL20 dataset 35 The dataset includes 20 types of

images depicting various objects, each captured at 5-

degree intervals in the horizontal direction,

resulting in a total of 72 images capturing different

angles within a 360-degree range. Consequently, the

dataset consists of a total of 1440 grayscale images. 

• Yale dataset 1 This dataset consists of 15 categories

of images, each with 11 images, resulting in a total

of 165 grayscale images depicting human facial

features. Each person’s portrait exhibits different

characteristics, such as the presence or absence of

glasses, different lighting directions (left, center,

right), and emotional expression (joyful, neutral,

melancholic).

• AR dataset 33 The dataset comprises 50 male and

50 female subjects, each with 26 images, resulting in

a total of 2600 images.

• PIE dataset 41 The dataset comprises 2586 images

captured by 68 individuals, and each of them is

presented with 42 grayscale images featuring four

distinct facial expressions and varying lighting

conditions.

• ORL dataset 39 The dataset comprises 400 images

featuring 40 distinct individuals, with 10

photographs captured for each individual. These

images were obtained under varying conditions,

including different lighting, facial expressions, and

details.

Comparison algorithms 

In order to fairly demonstrate the performance of 

the Semi-GNMFSC algorithm, we will compare it 

with K-means, PCA, and six others classic NMF 

algorithms. Here is an introduction to these classic 

algorithms being compared. 

• K-means  42,21 The algorithm operates on the

original matrix and does not perform operations

such as extracting and utilizing the information

contained in the original matrix .

• PCA 32 Principal component analysis, which is

widely used in data dimensionality reduction, can

extract the main components of the data set.

• NMF 24,25 The core purpose of this algorithm is to

represent the original matrix as the product of two

non-negative factor matrices, and the dimensions of

the two factor matrices are much smaller than the
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original matrix. The following algorithms (including 

those in this paper) are based on this idea. 

• NMFSC 17,12  The algorithm aims to produce

sparse representations and represent the data as a

linear combination of a small number of basis

vectors.

• ONMF(basic matrix orthogonal) 9 This algorithm

adds orthogonal constraints to the basic matrix based

on NMF.

• NeNMF 14 It applies Nesterov’s optimal gradient

method to alternatively optimize one factor with

another.

• Semi-NMF 10 Unlike classical NMF, Semi-NMF

only requires non-negative constraints on the

coefficient matrix V .

• GNMF 6 This algorithm combines graph theory,

manifold assumption, and NMF algorithm to

construct neighborhood graphs that preserve the

inherent geometric structure of the data.

The other implementation details of this paper are 

presented as follows: 

(1). After factorizing the matrices, this paper will use 

the K-means algorithm to perform clustering 

analysis on the target dataset. 

(2). For models with graph constraint in GNMF and 

Semi-GNMFSC, the 0-1 weighting scheme is adopted 

and the number of nearest neighbors is set to 20. 

(3). For all comparison algorithms, experimental 

operations will be conducted based on the original 

papers or source code of these algorithms. At the 

same time, the parameters involved in the 

corresponding paper or code will also be set 

according to the values in the original text to obtain 

the best performance of the comparison 

algorithms. 

(4). To reduce the randomness caused by 

initialization, repeat each algorithm 10 

times and report the average clustering results of 

these 10 runs. 

Evaluation indicators 

In order to measure the clustering performance, 

we will use three commonly used clustering 

evaluation indicators: clustering accuracy (ACC), 

normalized mutual information (NMI) and purity 

(Purity). The process of calculating these three 

indicators is achieved by comparing the obtained 

labels with the real labels. 

ACC is usually used to measure the percentage of 

correct labels obtained. Given a data set 

containing n images, for each sample image, let li 

be the clustering label obtained by applying some 

algorithm, and ri be the label provided by the data 

set, then the ACC is defined by 

𝐴𝐴𝐶 =
∑ 𝛿 (𝑟𝑖,𝑚𝑎𝑝(𝑙𝑖))
𝑛
𝑖=1

𝑛
 , 

where δ(x, y) is the classic delta function (δ(x, y) 

equals to 1 if x = y and equals to 0 otherwise). The 

function map (li) is the mapping function that 

maps each clustering label li to the equivalent label 

from the data set. 

Mutual information is usually used to measure 

the similarity of two clusters. Suppose there are 

two clustering results C and C′, the mutual 

information is defined by 

M I (C, C′) = ∑ 𝑝(𝑐𝑖 , 𝑐′𝑗 ). 𝑙𝑜𝑔
𝑝(𝑐𝑖,𝑐′𝑗)

𝑝(𝑐𝑖).𝑐′𝑗 
𝐶𝑖  ∈𝐶,𝑐′𝑗 ∈𝐶′

, 

where p (ci) and p (c′j) represent the probability 

that the sample belongs to class ci and class c′j 

,respectively. The probability p (ci, c′j) represents  

the joint probability that the sample belongs to 

both class ci and class c′j . So the definition of NMI 

is as follows: 

N M I (C, C′) = 
𝑀 𝐼 (𝐶,𝐶′)

𝑚𝑎𝑥 (𝐻(𝐶),𝐻 (𝐶𝜂  )) 
 . 

The Purity indicator is generally used to measure 

the purity between the clustered labels and the 

true labels, that is, whether the data is classified 

into one category after clustering, with a high 

probability of being classified into the same 

category. The formulas for Purity is defined as 

follows: 

Purity = ∑
𝑚𝑎𝑥𝑗 (𝑛𝑖

𝑗)

𝑁

𝑘
𝑖=1 , 

𝑊ℎ𝑎𝑟𝑒  𝑛𝑖
𝑗
 denotes the number of j input classes

that are assigned to the i-th class, and N is the 

total number of samples. 

It is easy to see that the ranges of the above  are 

indicators
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both within [0, 1], and the larger the value, the better 

the performance. 

Parameter Selection 

The performance demonstration of algorithms cannot 

be achieved without the help of good parameters. So, 

this subsection will use experiments to demonstrate the 

selection of parameters. The regularization parameter 

λ and the sparsity parameter α are two highly crucial 

parameters in the algorithm, whose values will directly 

affect the convergence speed and performance of the 

algorithm. Therefore, this paper will evaluate the 

influence of different parameter values on performance 

through a large number of experiments. We will test 

the effects of different parameter values on the 

performance of the proposed algorithm on five 

classical data sets. Meanwhile, consistent with 

tradition, α and λ will be within the scope of the fol-

lowing set: {10−1, 100, 101, 102, 103}. The experimental 

results are summarized and the clustering performance 

results corresponding to different parameter values in 

the Semi-GNMFSCV algorithm are shown as follows. 

From the Figure 1 to 5, it can be seen that the clustering 

performance of Semi-GNMFSC algorithm changes 

with the different values of α and λ parameters. 

According to the Figure 1, in the COIL20 data set, when 

the sparsity parameter α = 1 and the regularization 

parameter λ = 100, the values of NMI, ACC and Purity 

are all the highest, which indicates that the 

performance of Semi-GNMFSCV algorithm is optimal 

under α = 1 and λ = 100. Similarly (omitting details), 

observing the experimental results on the other four 

data sets, the performance of the algorithm is also 

optimal when α = 1, λ = 100. Furthermore (omitting 

details), we will get the experimental results of the 

parameter selection for the Semi-GNMFSCU algorithm, 

where the selection results for 

Figure 1 : The COIL20 dataset, Semi-GNMFSCV  

algorithm clustering performance and the relationship 

between the parameter value. 

Figure 2 : The ORL dataset, Semi-GNMFSCV  

algorithm clustering performance and the 

relationship between the parameter value. 

Figure 3 : The Yale dataset, Semi-GNMFSCV

algorithm clustering performance and the 

relationship between the parameter value. 

parameters α and λ are also α = 1 and λ = 100. So, 

in the following experiments, we will set α = 1, λ = 

100.  

Figure 4 : The AR dataset, Semi-GNMFSCV

algorithm clustering performance and the 

relationship between the parameter value.  

Figure 5 : The PIE dataset, Semi-GNMFSCV

algorithm clustering performance and the 

relationship between the parameter value. 

 Figure 6 : Images with varying degrees of Salt and 

pepper noise 

(a) Original image, (b) 20%, (c) 40%,  (d) 60%
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Figure 7 : Images with varying degrees of Gaussian 

noise 

(a) Original image  (b) 0.001  (c) 0.01  (d) 0.1

Using the two forms of noisy images mentioned 

above, we will conduct clustering experiments on 

COIL20 and Yale datasets and form the following four 

tables. 

Discussion on clustering performance 

In this subsection, we show the effectiveness of 

Semi-GNMFSC algorithm by comparing a large 

number of clustering experiments. In these 

experiments, the dimension K of the feature 

subspace was taken as 5, 10, 20, 30, 40 and 50, 

respectively.  

Note that the decimal values in the two columns on 

the far right of all tables are the results of the 

algorithms proposed in this paper.  

For the purpose of providing a clearer view         of 

experimental results, the best clustering values are 

in bold for all datasets. Please refer to the detailed 

values provided in Table 2- Table 6. 

Table 2 : Clustering results of different algorithms on COIL20 data 

K 
K-

means 
PCA NMF NMFSC 

Semi-

NMF 
GNMF ONMF NeNMF 

Semi-

GNMFSCV 

Semi-

GNMFSCU 

5 0.5088 0.6543 0.5243 0.5868 0.5863 0.6833 0.6121 0.5521 0.6681 0.6588 

10 0.4811 0.6052 0.5043 0.5768 0.5713 0.6521 0.5839 0.5354 0.6558 0.6781 

20 0.4527 0.5843 0.4775 0.5721 0.5689 0.6479 0.5732 0.5023 0.7826 0.7954 

30 0.4202 0.5633 0.4522 0.5567 0.5201 0.6084 0.5631 0.4932 0.8132 0.8267 

40 0.4055 0.5454 0.4324 0.5299 0.5132 0.5933 0.5412 0.4746 0.8109 0.8043 

50 0.3790 0.5041 0.3853 0.4975 0.4025 0.5764 0.4866 0.4574 0.7868 0.7917 

NMI 

5 0.7169 0.7643 0.7243 0.7168 0.7313 0.8333 0.8233 0.7132 0.7760 0.7675 

10 0.7267 0.7526 0.7134 0.7080 0.7180 0.8321 0.8132 0.7025 0.8325 0.8316 

20 0.7051 0.7439 0.7011 0.6951 0.7041 0.8145 0.8020 0.7023 0.8966 0.8999 

30 0.6923 0.7367 0.6991 0.6877 0.6906 0.8088 0.7924 0.6924 0.9202 0.9245 

40 0.6888 0.7243 0.6865 0.6799 0.6853 0.8012 0.7832 0.6824 0.8934 0.8985 

50 0.6711 0.7143 0.6853 0.6675 0.6825 0.7983 0.7866 0.6810 0.8283 0.8396 

Purity 

5 0.5172 0.6359 0.5543 0.6168 0.6113 0.7133 0.6933 0.6033 0.6556 0.6467 

10 0.5107 0.6243 0.5483 0.6132 0.6007 0.7076 0.6924 0.5944 0.7229 0.7211 

20 0.5081 0.6047 0.5300 0.5825 0.5925 0.6833 0.6888 0.5888 0.8306 0.8335 

30 0.4981 0.5943 0.5265 0.5775 0.5844 0.6744 0.6732 0.5732 0.8556 0.8610 

40 0.4834 0.5888 0.5125 0.5682 0.5450 0.6678 0.6611 0.5611 0.8354 0.8348 

50 0.4711 0.5742 0.5153 0.5566 0.5325 0.6549 0.6566 0.5566 0.7632 0.8396 
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Table 3 : Clustering results of different algorithms on ORL data 

ACC 

K 
K-

means 
PCA NMF NMFSC 

Semi-

NMF 
GNMF ONMF NeNMF 

Semi-

GNMFSCV 

Semi-

GNMFSCU 

5 0.3525 0.4843 0.2743 0.4368 0.3813 0.4475 0.3925 0.4632 0.4525 0.4775 

10 0.4511 0.4721 0.2610 0.4250 0.3675 0.4600 0.3875 0.4525 0.4825 0.4975 

20 0.4213 0.4443 0.1961 0.4175 0.3750 0.4525 0.3732 0.4432 0.4575 0.4613 

30 0.4122 0.4477 0.1640 0.4050 0.4150 0.4433 0.3628 0.4332 0.5075 0.4925 

40 0.4011 0.4819 0.1553 0.3975 0.4025 0.4232 0.3766 0.4032 0.4888 0.4900 

50 0.3959 0.4743 0.1478 0.3932 0.3921 0.4123 0.3621 0.3932 0.4794 0.4650 

NMI 

5 0.5491 0.6043 0.5643 0.5868 0.5813 0.6698 0.6258 0.6133 0.664 0.6743 

10 0.5353 0.5911 0.5550 0.5750 0.5923 0.6853 0.6175 0.6062 0.693 0.6932 

20 0.5251 0.5842 0.5311 0.5851 0.5841 0.6537 0.5919 0.5941 0.6798 0.6803 

30 0.5115 0.5755 0.5262 0.564 0.5706 0.6433 0.5888 0.5804 0.6921 0.6864 

40 0.5011 0.5639 0.5153 0.5475 0.5625 0.6365 0.5766 0.5739 0.6700 0.6713 

50 0.4921 0.5511 0.5003 0.5358 0.5401 0.6274 0.5675 0.5518 0.6672 0.6671 

Purity 

5 0.5175 0.5243 0.5001 0.5668 0.5413 0.4498 0.425 0.4962 0.4950 0.5800 

10 0.4981 0.5702 0.5025 0.4650 0.3875 0.5075 0.4923 0.5800 0.5975 0.6000 

20 0.4888 0.5511 0.4900 0.5525 0.4125 0.5425 0.4872 0.5611 0.5775 0.5750 

30 0.4752 0.5473 0.4829 0.5375 0.4625 0.5033 0.4575 0.5437 0.5525 0.5400 

40 0.4645 0.5299 0.4753 0.4975 0.4025 0.4932 0.4866 0.5123 0.5410 0.5425 

50 0.4534 0.5145 0.4625 0.4875 0.3850 0.4833 0.4455 0.5078 0.5350 0.5375 

 Based on the findings presented in the table above, it 

is evident that the Semi-GNMFSC model 

outperforms other models to a significant degree. 

This superiority can be primarily attributed to the 

synergistic impact of sparse constraint and graph 

regularization constraint. Through summarizing and 

scrutinizing the experimental outcomes across the 

aforementioned five datasets, a comprehensive 

analysis of the results can be derived. 

(1) Firstly, the Semi-GNMFSCU algorithm has

exhibited superior performance across all five

datasets and displayed robust stability in handling 

diverse types of data. Specifically, in the COIL20

dataset, compared to the worst performing NMF,

Semi-GNMFSCU  has  achieved the highest

improvements in ACC, NMI, and Purity by 41.27%,

22.79%, and 6.85% respectively. In the ORL dataset, 

compared with the worst performing NMF, Semi-

GNMFSCU has achieved the highest  improvements in 

ACC, NMI, and Purity by 33.47%, 16.02% and 7.5% 

respectively. In the PIE dataset, compared with the 

worst-performing Semi-NMF, Semi-GNMFSCU has 

achieved the highest improvements in ACC, NMI, and 

Purity by 11.56%, 14.46% and 13.79% respectively. In 

the AR dataset, compared with the worst-performing 

GNMF, Semi- GNMFSCU has achieved the highest 

improvements in ACC, NMI, and Purity by 38.75%, 

34.38%, and 35.95% respectively. In the Yale dataset, 

compared to the worst performing Semi-NMF, Semi-

GNMFSCU has achieved the highest improvements in 

ACC, NMI, and Purity by 17.01%, 18.7% and 19.85% 

respectively. The superior performance of the Semi-

GNMFSCU algorithm can be attributed to the 

synergistic
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Table 4 : Clustering results of different algorithms on PIE data 

ACC 

K 
K-

means 
PCA NMF NMFSC 

Semi-

NMF 
GNMF ONMF NeNMF 

Semi-

GNMFSCV 

Semi-

GNMFSCU 

5 0.0950 0.1432 0.0770 0.0768 0.0668 0.1783 0.0720 0.1032 0.1356 0.1499 

10 0.0938 0.1143 0.1108 0.1005 0.0836 0.1740 0.0788 0.0988 0.1816 0.1729 

20 0.0949 0.1042 0.0975 0.0921 0.0789 0.1613 0.0692 0.0932 0.1860 0.1724 

30 0.0958 0.0999 0.0896 0.0901 0.0701 0.1532 0.0669 0.0830 0.1707 0.1857 

40 0.0854 0.0970 0.0824 0.0899 0.0699 0.1468 0.0572 0.0762 0.1533 0.1553 

50 0.0810 0.0888 0.0653 0.0795 0.0683 0.1436 0.0566 0.0731 0.1439 0.1566 

NMI 

5 0.2215 0.2543 0.1938 0.1933 0.1915 0.3611 0.1716 0.2632 0.3040 0.3109 

10 0.2242 0.2369 0.2635 0.2367 0.2609 0.3535 0.1976 0.2724 0.3626 0.3494 

20 0.2190 0.2211 0.2511 0.2151 0.2541 0.3433 0.1820 0.2723 0.3547 0.3490 

30 0.2136 0.2143 0.2439 0.2091 0.2406 0.3307 0.1770 0.2838 0.3321 0.3441 

40 0.2067 0.2009 0.2265 0.2000 0.2453 0.3274 0.1732 0.2724 0.3433 0.3542 

50 0.2011 0.2000 0.2153 0.1975 0.1825 0.3133 0.1666 0.2510 0.3261 0.3271 

Purity 

5 0.1148 0.1443 0.0903 0.0938 0.0764 0.2056 0.0863 0.1133 0.1622 0.1785 

10 0.1127 0.1341 0.1295 0.1142 0.0951 0.1760 0.0939 0.1022 0.1781 0.1765 

20 0.1155 0.1167 0.1000 0.1025 0.0825 0.1833 0.0833 0.0988 0.1921 0.1966 

30 0.1079 0.1043 0.1067 0.1065 0.0731 0.1692 0.0825 0.0924 0.1799 0.1982 

40 0.0881 0.0944 0.0825 0.0973 0.0650 0.1533 0.0733 0.0811 0.1842 0.1939 

50 0.0711 0.0943 0.0853 0.0877 0.0625 0.1422 0.0633 0.0766 0.2061 0.2004 

effects of sparse constraint and graph regularization 

constraint. Incorporating a sparse constraint into the 

basis matrix U leads to a more sparsely represented 

basis matrix, thereby enhancing the local 

representation capability of the model. Furthermore, 

the inclusion of a graph regularization term 

effectively constrains the coefficient matrix to better 

preserve latent geometric structure information 

within the dataset.  

(2) Secondly, Semi-GNMFSCV exhibits a slightly

lower performance in clustering compared to the

Semi-GNMFSCU model. The reason analysis is as

follows. Although the addition of sparse constraints

to the coefficient matrix in the Semi-GNMFSCV

model results in a sparser matrix representation, it is

crucial to note that while the coefficient matrix V

serves as a substitute for the original data matrix after

dimensionality reduction, there is a risk of over- 

 

reduction. That is to say, the incorporation of 

sparse constraints do not necessarily enhance local 

representation effects like in the basis matrix U , 

instead, it has the potential to compromise essential 

latent information within the data and 

consequently diminish clustering performance. 

The experimental results also confirmed that the 

clustering performance of the Semi-GNMFSCV  

model is remarkably inferior to that of the Semi-

GNMFSCU model. Consequently, the Semi-

GNMFSCU model exhibits strong applicability and 

generalization. In future research, we will 

furthermore investigate how to adequately harness 

the advantages of sparse constraint and graph 

regularization constraint in coordination to 

enhance the adaptability and robustness of the 

model in various complex scenarios. 

(3) Thirdly, the Semi-GNMFSC algorithm exhibits

strong adaptability in datasets of varying scales

datasets of
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Table 5 : Clustering results of different algorithms on AR data 

ACC 

K K-

means 

PCA NMF NMFSC Semi-

NMF 

GNMF ONMF NeNMF Semi-

GNMFSCV 

Semi-

GNMFSCU 

5 0.3798 0.3744 0.2762 0.2732 0.2494 0.0417 0.3196 0.2827 0.3863 0.3988 

10 0.3857 0.4316 0.3071 0.3268 0.2423 0.0810 0.3387 0.3339 0.4512 0.4685 

20 0.3774 0.4243 0.3643 0.3875 0.3161 0.1429 0.3431 0.3245 0.4583 0.4958 

30 0.3792 0.4107 0.3425 0.3851 0.3268 0.2101 0.3631 0.4732 0.4845 0.5024 

40 0.3647 0.4243 0.4054 0.3786 0.4048 0.2399 0.3412 0.5068 0.4571 0.5107 

50 0.3821 0.4337 0.4381 0.4411 0.3768 0.2964 0.3388 0.5125 0.4464 0.5095 

NMI 

5 0.637 0.6543 0.6422 0.6220 0.5998 0.3498 0.6604 0.6277 0.6886 0.6936 

10 0.6478 0.6679 0.6504 0.6641 0.5774 0.4297 0.6797 0.6689 0.7293 0.7313 

20 0.6597 0.6812 0.6916 0.6999 0.6346 0.5603 0.6899 0.7410 0.7462 0.7533 

30 0.6667 0.6831 0.7143 0.7078 0.6373 0.6258 0.7024 0.7621 0.7526 0.7605 

40 0.6676 0.6843 0.7173 0.7032 0.6853 0.6618 0.7532 0.7640 0.7482 0.7671 

50 0.6511 0.6743 0.7053 0.7075 0.6025 0.6833 0.7167 0.7991 0.7411 0.7643 

Purity 

5 0.3298 0.3643 0.2964 0.2911 0.2762 0.0417 0.3470 0.2994 0.3792 0.4226 

10 0.3300 0.4544 0.328 0.3494 0.2583 0.0810 0.3768 0.3542 0.4512 0.4815 

20 0.3107 0.4781 0.3929 0.4071 0.3423 0.1429 0.3917 0.4649 0.4833 0.5024 

30 0.3081 0.4523 0.4000 0.4375 0.4625 0.2327 0.3832 0.4732 0.4845 0.5089 

40 0.3177 0.4632 0.4125 0.4175 0.4850 0.2535 0.3902 0.5125 0.4744 0.5190 

50 0.3011 0.4243 0.4053 0.4975 0.4025 0.2542 0.4129 0.5318 0.4464 0.5155 

way for different avenues of investigation. 

Discussion on Noise Robustness 

In the above experiments, the performance of the 

proposed method is better than that of the 

comparison methods. In order to further prove the 

robustness of Semi-GNMFSC model, we carry out 

experiments on noisy data. In particular, in our 

experiments, we consider two types of noise 

including salt and pepper noise and Gaussian 

noise. For simplicity, consider only the case where 

the feature dimension K = 30, and then we will 

conduct experiments on the COIL20 and Yale 

datasets. First, salt and pepper noise with noise 

level (density) 20%, 40% and 60% is added to the 

dataset, respectively. 

 Next, we add Gaussian noise with a mean of 0 and 

variances within {0.001, 0.01, 0.1} to the dataset, 

called light, medium, and heavy noise conditions in 

this test. Part of the data sets with noise image is  

displayed as follows: 

strong adaptability in datasets of varying scales 

and complexities. Whether dealing with tiny-scale, 

straight forward data or large-scale, intricate data, 

the algorithm consistently achieves effective 

clustering and delivers satisfactory outcomes. 

These findings underscore the broad applicability 

of the Semi-GNMFSC algorithm and its capacity to 

showcase advantages in diverse practical 

scenarios, thereby offering crucial support for data 

analysis and dimensionality reduction.  

(4) Finally, it is essential to highlight that while the

Semi-GNMFSCU model demonstrates superior

performance in handling datasets such as COIL20,

Yale and AR. Next, in the presence of noise, we

will mainly test our algorithm on the well

performing (without noise) COIL2 and Yale

datasets, as a special case to illustrate the

advantages of our algorithm. Of course, even with

these well performing datasets, there is still room

for improvement in our algorithms. Therefore,

additional additional optimization  remains a

crucial area for future research, thus paving the
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Table 6 : Clustering results of different algorithms on Yale data 

ACC 

K 
K-

means 
PCA NMF NMFSC 

Semi-

NMF 
GNMF ONMF NeNMF 

Semi-

GNMFSCV 

Semi-

GNMFSCU 

5 0.3394 0.4143 0.3242 0.3758 0.400 0.3333 0.3879 0.3818 0.4061 0.4176 

10 0.3136 0.3752 0.3273 0.3697 0.3455 0.3091 0.3870 0.3576 0.4161 0.4073 

20 0.3276 0.3443 0.3455 0.3818 0.3152 0.3212 0.3455 0.3488 0.4444 0.4212 

30 0.3394 0.3633 0.3636 0.3030 0.2606 0.3394 0.3424 0.3558 0.3981 0.4052 

40 0.3055 0.3454 0.3324 0.3299 0.2132 0.3433 0.3112 0.3746 0.3771 0.3833 

50 0.3394 0.3541 0.3212 0.3515 0.2303 0.3152 0.3818 0.3030 0.3868 0.3897 

NMI 

5 0.4201 0.4447 0.3561 0.4504 0.4494 0.3873 0.4572 0.4479 0.4831 0.4972 

10 0.3825 0.4026 0.3868 0.4431 0.4203 0.3727 0.4436 0.4438 0.4833 0.4818 

20 0.3988 0.4088 0.3933 0.4099 0.3725 0.3743 0.4018 0.4097 0.4851 0.4798 

30 0.4077 0.4265 0.4035 0.3924 0.2911 0.3818 0.4126 0.4222 0.4719 0.4781 

40 0.4188 0.4578 0.3965 0.4499 0.3153 0.3012 0.4432 0.4324 0.4529 0.4694 

50 0.4017 0.4299 0.4125 0.4293 0.2854 0.3716 0.4311 0.3854 0.4483 0.4555 

Purity 

5 0.3515 0.4059 0.3242 0.4000 0.4061 0.3333 0.3697 0.3879 0.4115 0.4186 

10 0.3636 0.3822 0.3636 0.3879 0.3697 0.3212 0.4000 0.3697 0.4128 0.4033 

20 0.3439 0.3647 0.3758 0.3700 0.3273 0.3394 0.3576 0.3758 0.4222 0.4211 

30 0.3558 0.3743 0.3817 0.3555 0.2788 0.3333 0.3424 0.3769 0.4694 0.4773 

40 0.3434 0.3688 0.3125 0.3682 0.3450 0.3678 0.3213 0.3611 0.4084 0.4094 

50 0.3577 0.3811 0.3428 0.3576 0.2424 0.3273 0.3761 0.3273 0.3682 0.3702 

Table 7 : Clustering results of COIL20 data set containing salt-and-pepper noise 

ACC 

Noise 

Density 

K-

means 

PCA NMF ONMF GNMF NMFSC Semi-

NMF 

NeNMF Semi-

GNMFSCV 

Semi-

GNMFSCU 

20% 0.4317 0.4998 0.4896 0.6229 0.6924 0.4882 0.5181 0.5366 0.7153 0.7177 

40% 0.4196 0.4835 0.4713 0.4924 0.4486 0.4711 0.4333 0.4982 0.6160 0.6098 

60% 0.2729 0.2617 0.2521 0.2833 0.1847 0.2333 0.1549 0.2444 0.3701 0.3753 

NMI 

20% 0.6598 0.6871 0.6777 0.7516 0.8291 0.6711 0.657 0.6724 0.8455 0.846 

40% 0.5074 0.5623 0.5674 0.5896 0.5318 0.5641 0.5309 0.5123 0.6921 0.6999 

60% 0.3787 0.3399 0.3012 0.3507 0.3521 0.3029 0.3199 0.3749 0.4354 0.4321 

Purity 

20% 0.4498 0.5020 0.5177 0.5316 0.5291 0.4723 0.457 0.4619 0.7455 0.7500 

40% 0.4274 0.4483 0.4674 0.4819 0.4318 0.4508 0.4308 0.4488 0.5921 0.5853 

60% 0.2297 0.2471 0.2512 0.2604 0.2584 0.2308 0.2185 0.2231 0.3554 0.3642 
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Table 8 : Clustering results of Yale data set containing salt-and-pepper noise 

ACC 

Noise 

Density 

K-

means 
PCA NMF ONMF GNMF NMFSC 

Semi-

NMF 
NeNMF 

Semi-

GNMFSCV 

Semi-

GNMFSCU 

20% 0.4317 0.4998 0.4896 0.6229 0.6924 0.4882 0.5181 0.5366 0.7153 0.7177 

40% 0.4196 0.4835 0.4713 0.4924 0.4486 0.4711 0.4333 0.4982 0.6160 0.6098 

60% 0.2729 0.2617 0.2521 0.2833 0.1847 0.2333 0.1549 0.2444 0.3701 0.3753 

NMI 

20% 0.6598 0.6871 0.6777 0.7516 0.8291 0.6711 0.6570 0.6724 0.8455 0.8460 

40% 0.5074 0.5623 0.5674 0.5896 0.5318 0.5641 0.5309 0.5123 0.6921 0.6999 

60% 0.3787 0.3399 0.3012 0.3507 0.3521 0.3029 0.3199 0.3749 0.4354 0.4321 

Purity 

20% 0.4498 0.5020 0.5177 0.5316 0.5291 0.4723 0.4570 0.4619 0.7455 0.7500 

40% 0.4274 0.4483 0.4674 0.4819 0.4318 0.4508 0.4308 0.4488 0.5921 0.5853 

60% 0.2297 0.2471 0.2512 0.2604 0.2584 0.2308 0.2185 0.2231 0.3554 0.3642 

From the above experimental results, it can be seen that 

the Semi-GNMFSC algorithm proposed in this paper 

has strong robustness. By observing the above tables, 

we can draw the following conclusions: 

(1). As the level of noise fluctuates from light to heavy, 

there is a significant decrease in the performance of all 

algorithms, indicating that noise interference has a 

detrimental impact on image clustering. Semi- 

GNMFSCV and Semi-GNMFSCU demonstrate 

robustness against noise by achieving favorable results 

across multiple datasets. For the COIL20 dataset with 

pepper and salt noise, the Semi-GNMFSCU algorithm 

has demonstrated significant improvements in 

clustering indicators com- pared to other methods: 

ACC increased by up to 28.6%, NMI increased by up to 

19.27%, and Purity increased by up to 30.02%. 

Similarly, in the presence of Gaussian noise, the Semi-

GNMFSCU algorithm showed improved performance 

with an increase of up to 15.64% in ACC, up to 21.26% 

in NMI, and up to 22.47% in Purity when compared 

with other methods on the COIL20 dataset. 

Furthermore, on the Yale dataset containing various 

levels of Gaussian noise and pepper-and-salt noise, the 

Semi-GNMFSCU algorithm exhibits superior 
clustering performance. Of course, for the Semi- 

GNMFSCV algorithm, its performance’s improvement 

is also more comprehensive (omitting details). 

Notably, even under noisy conditions, our algorithms 

effectively extract hidden feature information from 

data while maintaining strong accuracy and reliability. 

(2). Based on the tables above, it is evident that the 

Semi-GNMFSCU model demonstrates superior 

robustness in a comprehensive evaluation. This 

indicates its ability to maintain consistent performance 

across diverse and complex scenarios, showcasing 

strong resistance to interference and a high level of 

generalization. It is worth noting that the Semi-

GNMFSCV model also exhibits commendable 

robustness, ranking closely behind the Semi-

GNMFSCU model. Overall, both models display 

impressive resilience. Through our experiments, we 

can conclude that when facing a large amount of 

contaminated redundant data in the original matrix, 

introducing sparse constraints into the basis matrix U 

and using the Semi-GNMFSCU algorithm can 

effectively identify the potential expressive feature 

data. Consequently, this approach mitigates the impact 

of contaminated data and enhances overall model 

robustness. 

(3). The Semi-GNMFSCV model, which introduces  

618 



The Journal of Reproductive Medicine® 

Table 9 : Clustering results of COIL20 data set containing Gaussian noise 

ACC 

Noise 

Variance 

K-

means 
PCA NMF ONMF GNMF NMFSC 

Semi-

NMF 
NeNMF 

Semi-

GNMFSCV 

Semi-

GNMFSCU 

0.001 0.5454 0.5877 0.5642 0.5703 0.6222 0.5681 0.6090 0.5933 0.6899 0.7018 

0.01 0.5372 0.5643 0.5444 0.5333 0.5583 0.5181 0.5653 0.5699 0.6475 0.6470 

0.1 0.5242 0.5200 0.5021 0.4950 0.5190 0.4874 0.5283 0.5321 0.6006 0.6111 

NMI 

0.001 0.6866 0.7453 0.7345 0.7516 0.8308 0.6957 0.6976 0.8122 0.8888 0.8992 

0.01 0.6528 0.7095 0.6953 0.7567 0.8150 0.7183 0.7284 0.7439 0.8428 0.842 

0.1 0.6032 0.6879 0.6687 0.7203 0.7911 0.7068 0.6974 0.7092 0.8015 0.8194 

Purity 

0.001 0.6798 0.6999 0.6877 0.6916 0.7291 0.6711 0.6627 0.7124 0.7955 0.7966 

0.01 0.4674 0.5075 0.4874 0.5896 0.5318 0.5141 0.5309 0.5439 0.6921 0.6800 

0.1 0.3787 0.3904 0.3812 0.3507 0.3521 0.3429 0.3499 0.3524 0.4354 0.4483 

Table 10 : Clustering results of Yale data set containing Gaussian noise 

ACC 

Noise 

Variance 

K-

means 
PCA NMF ONMF GNMF NMFSC 

Semi-

NMF 
NeNMF 

Semi-

GNMFSCV 

Semi-

GNMFSCU 

0.001 0.3394 0.3777 0.3576 0.3879 0.3212 0.3311 0.3467 0.3563 0.3909 0.4013 

0.01 0.2839 0.3102 0.2921 0.3161 0.3152 0.3033 0.3064 0.3222 0.3800 0.3778 

0.1 0.2027 0.2200 0.2145 0.2252 0.2109 0.2009 0.2082 0.2209 0.2788 0.2875 

NMI 

0.001 0.3519 0.4285 0.4266 0.4383 0.3977 0.3899 0.3924 0.4075 0.4451 0.4506 

0.01 0.3476 0.3827 0.3222 0.4041 0.3616 0.3852 0.3550 0.3799 0.4185 0.4198 

0.1 0.3130 0.3608 0.3069 0.3762 0.3574 0.3616 0.3271 0.3421 0.3836 0.3954 

Purity 

0.001 0.3398 0.3598 0.3577 0.3616 0.3595 0.3511 0.3570 0.3603 0.3955 0.3975 

0.01 0.2974 0.3089 0.3071 0.3196 0.3099 0.3141 0.3169 0.3198 0.3521 0.3500 

0.1 0.2187 0.2271 0.2212 0.2307 0.2299 0.2329 0.2401 0.2500 0.2554 0.2675 

sparse constraints into the coefficient matrix V ,exhibits  

a slight lower superiority over the Semi-GNMFSCU 

model in terms of enhancing robustness. This is 

attributed to the fact that the Semi-GNMFSCV model 

enforces sparse constraints on the coefficient matrix, 

resulting in the exclusion of numerous contaminated 

feature data and yielding a more transparent and 

sparser coefficient matrix. But compared to the Semi-

GNMFSCU algorithm, this sparsity enhancement is 

slightly excessive, and it is possible that the 

appropriate sparsity has already been transmitted to 

the matrix V in the Semi-GNMFSCU algorithm. Note 

that the coefficient matrix serves as a proxy for the 

original matrix in subsequent data clustering 

operations. From the experimental results, it can be 

seen that an appropriate enhancement of V sparsity 

helps to comprehensively enhance the robustness of 

the model. 

(4). Of course, although the overall performance of 
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the Semi-GNMFSCV algorithm is slightly 

unsatisfactory than Semi-GNMFSCU, we should 

also see that the Semi-GNMFSCV model with sparse 

constraints also performs well on a slightly smaller 

scale. It not only improves the robustness to noise 

interference and outliers to a certain extent, but also 

effectively reduces redundant information between 

features, thereby helping to extract more 

representative and discriminative features . 

Therefore, the Semi-GNMFSCV algorithm has also 

produced more accurate and reliable results in data 

clustering tasks, which is worth further application 

and research. 

CONCLUSIONS AND FUTURE RESEARCH 

In this paper, firstly, we have introduced the idea of 

Semi-NMF algorithm and l1 sparse constraint 

together to graph based factorization method, and 

then we have established a new type of Semi-NMF 

model (Semi-GNMFSC). The aim is to relax the 

constraints to get better performance on the original 

matrix and factorized matrices. More importantly, 

we provide the multiplication update rules and the 

convergence theorems (with proofs), which has 

been also used for analyzing experiments. It should 

be emphasized that the combination of semi-NMF, 

GNMF, and sparse constraints is the characteristic 

of this paper. 

So, as a conclusion, there are two questions that 

may bring more interesting work in the near future. 

(1) In this paper, Euclidean distance is used to

measure loss and define loss functions, but there are

many ways to measure residuals on the real, such

as the common β-divergence, so in the future

research work, we can choose different loss and

loss functions according to different real

applications.

(2) The construction of manifold structure is the

focus of manifold regularization algorithm, and the

construction of graph will directly affect the

performance of the algorithm. At present, a large

number of graph construction methods have been

proposed, and different structure-relation

construction methods are suitable for different data

sets. Therefore, how to combine manifold to

establish models under NMF algorithm is still a

fascinating problem. 
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