Impact of Family-Based Support on Recovery and Health in Stroke-Induced Hemiplegia: A Randomized Controlled Study

K Yamamoto¹, S Nakamura¹, Y Takeda², H Saito², M Ito^{3*}

Background: Stroke is a long-term condition that often requires extended rehabilitation and consistent care. Engaging family members in the care process may enhance recovery and overall health outcomes. This study aimed to assess the impact of a family-centered care program on the health status of stroke patients with hemiplegia.

Methods: In this randomized controlled clinical trial, 40 patients with post-stroke hemiplegia were selected and randomly assigned to either an intervention or a control group. Caregivers of patients in the intervention group participated in a structured family-based care program consisting of four training sessions, each lasting 50–60 minutes, provided before hospital discharge. Following this, caregivers continued implementing the program at home for four weeks. The control group received only standard post-discharge care. Health status was measured using a standardized questionnaire before the intervention and one month after completion. Data analysis was performed using SPSS version 21 with appropriate statistical tests.

Results: Before the intervention, there was no significant difference in health status scores between the two groups. However, post-intervention results showed a statistically significant improvement in the intervention group compared to controls (P < 0.05). Additionally, within-group analysis revealed a significant improvement in the intervention group after training, while no meaningful change was observed in the control group.

Conclusion: Implementing structured family-based care training for caregivers can enhance patient self-care and overall health outcomes in individuals with post-stroke hemiplegia. Integrating such family-centered approaches into rehabilitation programs may strengthen recovery and long-term well-being.

BACKGROUND

Stroke remains a major global health concern and is recognized as the third leading cause of mortality after cardiovascular diseases and cancer¹. Worldwide, it is estimated that approximately 500,000 individuals experience their first stroke each year, with an additional 100,000 suffering recurrent episodes, and around 160,000 deaths are attributed to stroke annually². Although a comprehensive national registry for stroke incidence and prevalence is lacking in Iran, regional data suggest an annual incidence ranging from 113–149 per 100,000 people across all age groups, rising

to over 500 cases per 100,000 among individuals aged over 45 years3. Beyond its high mortality rate, stroke often results in long-term disabilities and physical impairments, creating significant challenges for both hospital and home-based care systems4. These functional limitations can lead to psychological distress and reduced independence, further complicating recovery5. Common poststroke complications include balance musculoskeletal issues, dysphagia, bladder and bowel dysfunction, impaired self-care ability, and skin breakdown^{2,6}. Although the acute stage of stroke lasts only a few days, recovery is typically gradual and prolonged, requiring consistent

Department of Neurology, University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan.

²Center for Infectious Diseases, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.

^aDivision of Internal Medicine, Kyoto University Hospital, Kyoto 606-8507, Japan.

Address For correspondence to: M Ito, Division of Internal Medicine, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan. Email: m.ito@kyto-u.ac.jp

Financial Disclosures: None

0024-7758 © Journal of Reproductive Medicine®, Inc.

The Journal of Reproductive Medicine®

follow-up and rehabilitation to regain functional stability ^{6,7}. While pharmacologic interventions are necessary for managing the acute phase and preventing secondary complications, the cornerstone of recovery lies in continuous, long-term rehabilitation⁸. Early initiation of rehabilitation activities following the acute phase is crucial for addressing residual deficits and improving patient outcomes^{4,9}. Stroke often disrupts patients' daily lives and significantly affects their quality of life, underscoring the importance of comprehensive rehabilitation programs ^{7,10}.

Research indicates that more than 60% of stroke survivors experience varying degrees of disability, emphasizing the need to integrate rehabilitation as a vital component of post-stroke care¹¹. However, rehabilitation programs are often constrained by factors such as high costs, transportation challenges, and limited access to rehabilitation centers^{9,12}. Consequently, developing and implementing home-based care models has become a practical and cost-effective alternative for long-term management⁴.

In recent years, healthcare systems have increasingly shifted toward home-based management for patients requiring long-term and complex care, with family members serving as primary caregivers^{4,13}. Familycentered care is a collaborative approach that engages patients, caregivers, and healthcare providers in planning, delivering, and evaluating care to promote overall well-being¹⁴. Given the enduring physical and emotional needs of stroke patients, the family serves as the most influential support system in facilitating recovery and rehabilitation^{4,11}. Active involvement of family members in the care and rehabilitation process can significantly enhance the recovery and quality of life of stroke patients. Therefore, considering the growing importance of family participation in patient care and the limited evidence available, the present study was designed to evaluate the effectiveness of a family-based home care program on the health status of hemiplegic patients following stroke.

MATERIALS AND METHODS

Study Design and Setting

This randomized clinical trial was conducted from November 2015 to March 2016 at the Neurology

Department of Farabi Hospital, Kermanshah, Iran, and registered under IRCT2015070214333n38. Eligible participants included patients diagnosed with hemiplegic stroke who consented to participate.

Participants and Sampling

Participants were selected based on inclusion criteria: willingness to participate, confirmed diagnosis of hemiplegic stroke, and the presence of a family caregiver meeting the following criteria – living with the patient, absence of mental disorders, ability to provide care, no use of psychotropic medication, and at least a third-grade high school education. Exclusion criteria included patient death, early discharge, or withdrawal from the study. Using data from previous studies [15], with 95% confidence and 90% power, the minimum required sample was nine per group. To strengthen statistical power and allow for dropouts, 20 participants were included in each group, totaling 40 patients. Subjects were randomly allocated to intervention and control groups using a coin-toss method.

Intervention Procedure

In the intervention group, caregivers received a structured family-based home care training program designed using standard sources^{1,8,16–18}. training content covered understanding, symptom management, nutrition, pressure ulcer prevention, mobility, bowel and bladder control, and psychological support. The program was validated by three neurologists, four nursing faculty members, and three neurology nurses. Training sessions lasted 50-60 minutes over four consecutive days (up to eight sessions if during hospitalization. Caregivers practiced under supervision until achieving ≥95% competence on the care checklist, verified by experts. They then implemented the care plan at home for four weeks. Pamphlets and 24-hour contact access were provided for support. During the follow-up month, researchers contacted caregivers every 4–5 days to ensure continuity. Control group participants received only routine

hospital discharge instructions.

Data Collection Tools

Data were collected using a demographic questionnaire and the validated Health Status Questionnaire (SQ2/0) [19]. This 37-item tool assesses physical, psychological, and social health through subscales: general health, physical functioning, role limitations (physical and emotional), pain, vitality, mental health, social function, and health perception. Higher scores indicate better health status. Validity and reliability were confirmed in prior studies [17,20], with Cronbach's α values ranging from 0.79 to 0.94. In this study, overall reliability was reassessed (α = 0.885).

Data Analysis

Data were analyzed using SPSS version 21. Normality was tested with the Kolmogorov–Smirnov test. Depending on data distribution, appropriate parametric or nonparametric tests were used. A p-value <0.05 was considered statistically significant.

RESULTS

The study included a total of 40 participants, comprising 16 men (40%) and 24 women (60%), who were randomly assigned to either the intervention or control group. All participants completed the study, and no dropouts occurred during the research period.

The mean age of the patients was 66.20 ± 2.54 years (range: 16-92 years), while the mean age of caregivers was 37.28 ± 1.66 years (range: 16-57 years). Additional demographic characteristics of patients and caregivers are presented in Tables 1 and 2.

Before the intervention, the mean health status scores of both groups were comparable, showing no statistically significant difference (p > 0.05). However, after the intervention, the intervention group demonstrated a significantly higher mean health status score compared with the control group (p < 0.05). When analyzing the subscales of health status, no significant differences were found between the groups prior to the intervention. Following the intervention, significant improvements observed across nearly all subscales in the intervention group, except for Role Limitations due to Emotional Problems and Social Function, where the differences remained nonsignificant.

Within-group analysis revealed that the control group showed no significant improvement in any subscale, except for Physical Functioning, which showed a minor change. In contrast, the intervention group exhibited significant improvements across most dimensions of health status after the intervention, except for Social Function and Energy/Fatigue, which did not reach statistical significance.

Table 1: Demographic characteristics of subjects in the experimental and control groups

Variables	Control n (%)	Experimental n (%)	Statistical Test	p-Value
Gender	-	-	$\chi^2 = 0.417$	0.519
Female	13 (65)	11 (55)	-	-
Male	7 (35)	9 (45)	-	-
Marital	-	-	Fisher's exact	1
status			test = 1.26	
Single	0 (0)	1 (5)	-	-
Married	20 (100)	19 (95)	-	-
Place of	-	-	Fisher's exact	1
residence			test = 1.00	
Urban	17 (85)	17 (85)	-	-
Rural	3 (15)	3 (15)	-	-
Job status	-	-	-	-

Unemployed	0 (0)	1 (5)	-	-
Housewife	13 (65)	10 (50)	-	-
Business	5 (25)	6 (30)	-	-
Retired	2 (10)	3 (15)	-	-
Economic	-	-	$\chi^2 = 0.125$	0.723
status				
Weak	5 (25)	6 (30)	-	-
Moderate	15 (75)	14 (70)		-
Previous	-	-	$\chi^2 = 0.167$	0.192
illness				
history				
Yes	10 (50)	14 (70)	-	-
No	10 (50)	6 (30)	-	

Table 2: Demographic characteristics of caregiver participants in the study

Variables	Control Group n (%)	Experimental Group n (%)	Statistical Test	p-Value
Gender			$\chi^2 = 0.44$	0.507
Female	12 (60)	14 (70)		
Male	8 (40)	6 (30)		
Job status				
Unemployed	3 (15)	4 (20)		
Clerk	8 (40)	9 (45)		
Employed	9 (45)	5 (25)		
Housekeeper	0 (0)	2 (10)		
Educational			$\chi^2 = 0.404$	0.525
status				
High school	10 (50)	12 (60)		
Higher	10 (50)	8 (40)		
education				
Relationship				
to the patient				
Parents	0 (0)	2 (10)		
Spouse	0 (0)	1 (5)		
Son/Daughter	18 (90)	18 (90)		
Sibling	1 (5)	0 (0)		

Table 3: Mean scores of health status and its aspects in experimental and control groups

Aspect	Time	Experimental	Control	Statistical	p-Value
		Group	Group	Test	
		(Mean ± SD)	(Mean ± SD)		
General	Pre	3.20 ± 0.77	2.95 ± 0.95	Z = -1.005	0.315
Health					

	Post	4.95 ± 0.69	3.70 ± 0.80	Z = -4.28	0.001
Physical	Pre	10.40 ± 0.60	10.45 ± 0.83	T = -0.919	0.364
Functioning					
	Post	15.70 ± 1.25	14.10 ± 1.16	Z = -4.29	0.0001
Role	Pre	3.65 ± 0.49	4.00 ± 0.00	Z = -1.91	0.06
Limitations					
(Physical					
Health)					
	Post	4.65 ± 0.83	4.05 ± 0.22	Z = -2.93	0.003
Role	Pre	4.00 ± 0.00	3.85 ± 0.04	Z = -1.78	0.075
Limitations					
(Emotional					
Problems)					
	Post	3.95 ± 0.23	3.70 ± 0.57	Z = -1.88	0.06
Social	Pre	5.60 ± 0.60	5.50 ± 0.61	Z = -0.58	0.562
Function					
	Post	5.95 ± 0.69	5.75 ± 0.44	Z = -0.96	0.335
Bodily Pain	Pre	5.05 ± 0.69	4.75 ± 0.64	T = -1.39	0.16
	Post	6.90 ± 0.79	5.35 ± 0.69	Z = -4.61	0.001
Mental	Pre	16.65 ± 1.09	16.95 ± 1.19	T = 0.77	0.45
Health					
	Post	19.10 ± 1.25	16.70 ± 1.17	T = -5.75	0.001
Health	Pre	9.75 ± 1.27	9.55 ± 1.36	T = 0.95	0.145
Perception					
	Post	12.50 ± 0.88	10.25 ± 0.91	T = -9.83	0.0001
Energy /	Pre	9.75 ± 0.91	9.70 ± 0.80	T = 1.50	0.148
Fatigue					
	Post	10.60 ± 0.68	9.30 ± 1.13	Z = -2.62	0.009
Overall,	Pre	67.90 ± 2.73	67.75 ± 3.01	T = 0.055	0.956
Health					
Status					
	Post	84.10 ± 2.29	73.15 ± 2.77	T = -13.60	0.001

DISCUSSION

This study assessed the impact of a family-based care training program on the health status of hemiplegic stroke patients over a one-month follow-up period. The findings revealed that family-centered interventions, in which trained family members provided structured care at home, led to notable improvements in the overall health status of patients across most domains. These results support the value of engaging family members as active participants in post-stroke rehabilitation. The findings of this study

are consistent with those of Cordun and Marinescu [12], who demonstrated that early rehabilitation interventions enhance balance and motor function in stroke patients. Similar improvements in patient well-being following caregiver training have been documented in prior studies [5,18]. Chuluunbaatar et al. [19] reported that stroke survivors often exhibit significant dependency in daily activities and experience compromised physical and mental health—an observation aligned with the current results. In another study, Chaiyawat and Kulkantrakorn [11] found that elderly stroke

patients suffer substantial impairments in both physical and social functioning. Kafami et al. [17] also observed significant improvements in all health subscales except pain and social function after implementing self-management training. These findings collectively emphasize the importance of education and rehabilitation in improving patient outcomes.

However, in the present study, the subscales of Social Function and Role Limitations due to Emotional Problems did not show statistically significant improvement. This may be attributed to reduced family social interactions during the caregiving period and the reluctance of families to discuss emotional or social challenges publicly. Social well-being is often influenced by cultural norms, economic conditions, and interpersonal relationships, which may require longerterm interventions to change effectively. The study by Clark et al. [9] similarly reported improved health status post-intervention in the control group, although the change was not statistically significant. Dunbar et al. [20], in a study on self-care education for heart failure patients with diabetes, found that physical function and quality of life significantly improved after the intervention, supporting the results of the current research.

In contrast, Forster et al. [21] found no significant reduction in dependence or caregiver burden after a one-year follow-up, suggesting that differences in intervention duration, content, and measurement methods could explain the variation in findings. Hebel et al. [22] also observed early improvements in functional status after three months of training, but these benefits diminished over a year, possibly due to decreased adherence to care routines or increased knowledge in control groups over time.

Given that stroke patients often experience significant physical limitations, this study focused on training caregivers rather than the patients themselves. A validated health status questionnaire was used to measure outcomes, with proven reliability in prior Iranian studies. Nonetheless, certain limitations should be noted. The inclusion criterion requiring literacy among caregivers may restrict the generalizability of the results. Moreover, the limited number of volunteers and the short follow-up period (one month) may have constrained the strength of the conclusions.

CONCLUSION

The results suggest that implementing a structured, family-based care and rehabilitation program for hemiplegic stroke patients can significantly enhance their overall health status. Involving family members as trained caregivers provides an effective, accessible, and sustainable approach to post-stroke rehabilitation. It is recommended that similar family-centered programs be integrated into rehabilitation plans for other patient populations with long-term care needs.

ABBREVIATIONS

IRCT: Iranian Registry of Clinical Trials KUMS: Kermanshah University of Medical Sciences

REFERENCES

- 1. Oupra R, Griffiths R, Pryor J, et al. Effectiveness of Supportive Educative Learning programme on the level of strain experienced by caregivers of stroke patients in Thailand. Health Soc Care Community. 2010;18(1):10-20.
- 2. Smeltzer SC, Bare B, Hinkle JL, et al. Brunner and Suddarth's Textbook of Medical- Surgical Nursing, 12th edn. Philadelphia: Lippincott Williams & Wilkins;2010.
- 3. Delbari A, Salman-Roghani R, Tabatabae S-S. Stroke rehabilitation: Principles, advances, early experiences, and realities in Iran. Quarterly Journal of Sabzevar University of Medical Sciences. 2012;19(2):96-108.
- 4. Van Der Waldt J, Mothabeng J. Family Involvement in the Rehabilitation of a Stroke Patient (A Case Report). Nigerian Journal of Medical Rehabilitation. 2012;14(1 and 2):31-35.
- 5. Hong S-E, Kim C-H, Kim E-j, et al. Effect of a Caregiver's Education Program on Stroke Rehabilitation. Ann Rehabil Med. 2017;41(1):16-24.
- 6. Ski C, O'Connell B. Stroke: the increasing complexity of carer needs. J Neurosci Nurs. 2007;39(3):172-9.
- 7. Pan JH, Song XY, Lee SY, et al. Longitudinal analysis of quality of life for stroke survivors using latent curve models. Stroke. 2008;39(10):2795-802.
- 8. Jung B-C, Kim H-J. The effect of rehabilitation education program on family caregivers of stroke patients. Science Journal of Public Health. 2014;2(4):337-341.
- 9. Clark AP, McDougall G, Riegel B, et al. Health Status and Self-care Outcomes Following an Education-Support Intervention for People with Chronic Heart Failure. J Cardiovasc Nurs. 2015;30(4 Suppl 1):S3-13.
- 10. Markle-Reid M, Orridge C, Weir R, et al. Interprofessional stroke rehabilitation for stroke survivors using home care. Can J Neurol Sci. 2011;38(2):317-34.

- 11. Chaiyawat P, Kulkantrakorn K. Effectiveness of home rehabilitation program for ischemic stroke upon disability and quality of life: a randomized controlled trial. Clin Neurol Neurosurg. 2012;114(7):866-70.
- 12. Cordun M, Marinescu GA. Functional rehabilitation strategies for the improvement of balance in patients with hemiplegia after an ischemic stroke. Procedia-Social and Behavioral Sciences. 2014; 117:575-580.
- 13. Visser-Meily A, van Heugten C, Post M, et al. Intervention studies for caregivers of stroke survivors: a critical review. Patient Educ Couns. 2005;56(3):257-67
- 14. Pettoello-Mantovani M, Campanozzi A, Maiuri L, et al. Family-oriented and family-centered care in pediatrics. Ital J Pediatr. 2009;35(1):12.
- 15. Kalra L, Evans A, Perez I, et al. Training carers of stroke patients: randomised controlled trial. BMJ. 2004;328(7448):1099.
- 16. Barry TL, Kaiser KL, Atwood JR. Reliability, validity, and scoring of the Health Status Questionnaire-12 version 2.0. J Nurs Meas. 2007;15(1):24-35.
- 17. kafame f, Mohadi F, Norouzi K, et al. The Effect of Self-Management Program on the Health Status of Multiple Sclerosis Patients %J Journal of Research Development in Nursing and Midwifery. Journal of research development in nursing and midwifery. 2012;9(1):24-33.

- 18. Mudzi W. Impact of caregiver education on stroke survivors and their caregivers Johannesburg: University of the Witwatersrand;2010.
- 19. Chuluunbaatar E, Chou YJ, Pu C. Quality of life of stroke survivors and their informal caregivers: A prospective study. Disabil Health J. 2016;9(2):306-12.
- 20. Dunbar SB, Reilly CM, Gary R, et al. Randomized Clinical Trial of an Integrated Self-care Intervention for Persons with Heart Failure and Diabetes: Quality of Life and Physical Functioning Outcomes. J Card Fail. 2015;21(9):719-29.
- 21. Forster A, Dickerson J, Young J, et al. A structured training programme for caregivers of inpatients after stroke (TRACS): a cluster randomised controlled trial and cost-effectiveness analysis. Lancet. 2013;382(9910):2069-76.
- 22. Hebel K, Bieniaszewski L, Kowalewski W. Health education for stroke patient carers: Does it affect functional status improvement in patients after ischemic stroke?. Appl Nurs Res. 2014;27(3):e7-e12.